
Read Data On The Fly
written by DaltonRuer | February 11, 2025

Background
Recently I’ve heard a lot of comments suggesting that Qlik
Sense must be pre-loaded. Pre-loading has a lot of advantages
for speed and reuse, but that doesn’t have to be the case. So,
I published a video where I demonstrated the ability to browse
a Snowflake catalog, choose tables, and then read the data on
the fly into application. If that sounds cool, I then
demonstrated the ability to create a new application that
loaded the data from the selected tables. All with no QVD’s up
my sleeves.

The goal of this post is to document the technical bits of how
I was able to do those things. If you haven’t seen the video,
feel free to watch now before digging in to all the details.

Target Audience
I don’t often identify who my posts are for, but for this one
I would probably suggest that if you aren’t a technical
programmer type, you stop here. The video let you know what is
possible, and the rest of this post gets technical in terms of
how to actually make it happen. I don’t want you to lose the
magic, by getting overwhelmed with the technical
implementation.

https://qlikdork.com/2025/02/read-data-on-the-fly/

Partial Reload
The magic behind the “Ingest” button I had on the screen is
the ability of Qlik Sense to do a Partial Reload. That means
that all of the data you had previously loaded (full load) can
stay in tact, while new data is added to your data model.
First you need to call the IsPartialReload function. Then you
check the result of calling the function and either do the
code you wish to do for an initial “full load” or the code you
wish to perform if it’s being called to do a “partial reload.”
The basic structure in your load script would be as follows.

If (IsPartialReload() = False()) THEN
// Full Load
Else
// Partial Reload
End If;

In my code the “full load” consisted of reading the data
Snowflake Data Catalog to get a list of databases, schemas and
tables. Then I simply presented those things in filter boxes
just like you would any other data. Once I selected a table,
an “Ingest” button was enabled. When I pressed the button,
voila the system read the data on the fly for that table and
it was part of my application. In Figure 1 I show you the
properties for the button. First I go through a series of
Setting Variables including setting a variable for the type of
action I wish to take: “Add a Table” or “Clear the Tables.”
Then I simply invoke the Action “Reload Data” and check the
box indicating that I do not want to reload everything, I
simply want to do a partial reload.

Figure 1: Ingest button properties panels showing Partial
Reload action

In the “ELSE” section of my “IsPartialReload” condition of my
load script I then check the “vReloadType” variable. If I
pressed the Ingest button, then I simply setup the same type
of code I would if I were pre-loading the data. In a previous
video I produced that fully explains the partial reload
functionality, I explained the concept of the load prefixes
“Add” and “Replace.” Basically the “replace” says “if this
table already exists in memory, replace it.” Using variables
to read data on the fly from any location you wish. Now that’s
cool.

Figure 2: Load script code for a Partial Reload

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_NewerIngest.png
https://youtu.be/EVHWsBocrbs
https://qlikdork.com/wp-content/uploads/2025/02/LiveData_DoAddTableOrClearTable.png

Clearing Tables
The intent of adding tables on the fly was to be able to
rapidly prototype a solution and determine what data would be
needed to answer business questions. Proving that Qlik Sense
“can” read data on the fly is simply an exercise in what “can”
be done. Being able to do rapid business intelligence
prototype as I did in the video is what “should” be done to
bridge the gap between IT and Business, or to allow end users
a real self-service approach in which they didn’t even need to
know how to load data. Clearing the tables was functionality
that I added so that you could then start over and test a new
scenario.

The Clear Tables button also invokes the partial reload
script. But in the “else” condition for the “vReloadType”
variable, instead of adding a new table, it clears the tables
out of memory. Notice in Figure 2 that while looping through
all of the in-memory tables backwards, I tell it not to delete
3 specific tables. The Databases, Tables and Tenants tables.
You can probably guess that the Databases and Tables “tables”
represent the data read from Snowflake. The Tenants table is
the data read via a REST API that loads up the information
about the SPACES available on the tenant. That information is
needed when trying to create a new application as you will see
in the next section.

Create a New Application
Reading the data on the fly probably caught your attention
when you watched the video. But creating a new application on
the fly, that then read all of the data in a more traditional
approach probably kept your eyes glued to the monitor.

One of the key elements was being to identify the Space where
the application should be stored. Hence that “Tenants” table
that I loaded, and that I avoided not clearing out. Thus, the

user is able to select the Space where they want to create the
new application. The Application Name and Description are
simply Input boxes for variables. So, let’s just jump right in
to the “Create” button.

First the button action is set to “Execute Automation” and I
selected a pre-built Qlik Application Automation. (Described
later.) I checked the “Run mode: triggered” box which enables
any/all users to have permissions to trigger “my” automation.
Then I configured a bunch of parameters that simply contain a
bunch of variable values. Tables is a concatenated list of all
of the tables that were selected. The Library is a variable
that contains the name of the Snowflake Connector to use to
read the data from. The rest you can guess simply match
selections and inputs from the screen.

Figure 3: Create button properties

Parameters go t0 the Start Block
I’m about to unveil one of the least known things about Qlik
Application Automations. Any parameters that are passed
automatically go to the Start block of the automation, and you
don’t need any type of Input block. They are passed just like
you would pass a “body” to any other API.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_CreateNewApplication.png

Figure 4: Image of
Start Block with an
Output Block

For debugging purposes, I tend to always follow my Start block
with an Output block so that I can see what parameter names I
passed in, and how the values come across. You would be
surprised how many times this Dork has typos, or I actually
pass the wrong variable. In Figure 5, you can see the output
history from one run.

Figure 5: Output block showing all of the passed in parameters

Once you know about the fact you can pass parameters, the rest

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAAStartWithOutput.png
https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAAOutputHistory.png

becomes easy. You simply refer to them in the same way you
refer to anything else in Qlik Application Automations.

vScript
The center of attention for my Qlik Application Automation is
simply a variable named “vScript.” Why?

Well as you will see the rest of the process really just
involves standard automation blocks, like Create Application,
Save Application and Do Reload. As you know an application
without a load script is useless, and that’s what this vScript
variable will contain. The script we want that new application
to have.

In Figure 6 you can see that the first thing we want to have
in our load script is the Library Connection that will be used
to load the data. Notice that I hard code the text “LIB
CONNECT TO” but the library name itself comes from the Start
blocks, Library parameter that gets passed in. Another thing
to take note of is that Qlik Application Automation provides a
handy dandy function you can refer to called “linebreak” that
inserts a line break so our text won’t all run together.

Figure 6: Beginning of the vScript variable

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_VScript.png

Looping through the Tables
If you notice in Figure 5, my Qlik Sense application sends all
of the tables as a concatenated list like:
“Table1,Table2,Table3.” That’s because the expression behind
the “Tables” parameters is simply the Qlik Sense Concat
function: =Concat([Table Name], ‘,’)

Well we need to load each table separately in our load script
(vScript) and that process begins by using a “Loop” block,
that iterates through the “list” that I “explode” out of the
Start.Tables string.

Figure 7: Loop block with explode table list

Before you panic … you DO NOT HAVE TO TYPE expressions like
that in Qlik Application Automation. That string was created
for me. When the item is blank I chose “Add Formula” and then
used a Wizard as shown in Figure 8. Keep that in mind as you
see other figures as well. I simply chose to show some of the
values in their “raw” form so you could see how everything
refers to the parameters from the start block.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAALoopTables.png

Figure 8: Wizard to build the explode command from the
Start.Tables string

Adding Select Commands
You are already familiar with the fact that in your hand input
load scripts you say “Table: Load …. Table Load … etc.” In
Figure 9 you can see that same pattern. We append a
“linebreak” each time through the loop. Then we append the
table name that we are currently looping on. Then we simply do
“SQL Select * From” before each table. Notice that we
definitely want the fully qualified path of
“Database.Schema.TableName” and that we surround each of the
values with double quotes, just like we would type in
Snowflake. Then we simply end each table in the loop with a
“linebreak.”

https://qlikdork.com/wp-content/uploads/2025/02/LiveDataExplode.png

Figure 9: Appending table names 1 by 1 to our vScript variable

Metadata
If I’ve said “Metadata” once this year, I’ve said “Metadata” a
thousand times this year. In fact I even wrote an entire post
called “The Importance of Metadata.” Not only did I hammer
home the importance of Metadata, I demonstrated how to build
it in to your Qlik Scripts so that Table/Field descriptions
could be seen to ensure trust in the data.

So, while it is an extra step, I felt it was important enough
to show you how easily you could take take care of it. Even in
a situation like this where you are building an application on
the fly. We simply append another linebreak to our vScript
variable, then we create a mapping load called “TableMap.” The
“TableMap” is populated with the Table Names and Comments for
them from Snowflake. We add another linebreak and then simply
follow the format “Comment Tables using TableMap” that adds
the comments to the tables. Plus it’s a bonus win: Not only do
you read data on the fly, you read the metadata about the data
on the fly.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_Append.png
https://qlikdork.com/2025/01/the-importance-of-metadata/

Figure 10: We have to append a TableMap to our script that
will load the metadata from Snowflake

Create the Application
Feel free take a nice deep breath, stand, and relax your
brain. Because believe it or not, the hardest part of this
post is over. The next several steps are very easy to
understand.

While it may seem difficult, creating an application is
actually easy. You simply drag/drop the “Create App” block and
fill in the simple inputs for Application Name, Application
Description and Space ID. Best part … they were all passed in
to the Start. Gotta love that.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAAAddComments.png

Figure 11: Create Application block in Qlik Application
Automation

When this block is invoked when you trigger the automation
from the button in the Qlik Sense Application … boom a “brand
new” application is created with the name and description you
supplied in the Space ID that you supplied. Why did I call out
“brand new” the way I did? Because I wanted to call out that
there is another option for you to create an application,
other than creating a “brand new” one. You could also Copy an
Application instead. Pause on that for a second and think
through “why” it might be beneficial to copy an application,
rather than create a brand new one.

Many organizations like to start with “template applications.”
Perhaps the template application script file has INCLUDE
scripts that bring in a bunch of variables, or subroutines
that are commonly used. Maybe the template application has a
company logo that should be as a header, and color style
properties setup. What if it has sheets already established
for things like “Help me” “Dashboard” “Trends” “Details.”
Albeit they wouldn’t have any data values they could follow a

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAACreateApplication.png

design pattern that your organization desires. Interesting to
think through the possibilities. I would love to hear comments
from any of you reading who are in that situation and the
light goes on for you.

Figure 12:
Alternative to
creating a brand
new application is
to Copy an
Application

Setting the Load Script
While establishing our “vScript” variable may well have been
difficult to follow if you haven’t done much with Qlik
Application Automation in the past, setting the script for our
newly created application is easy. The Application ID is
simply set to the ID returned by the Create (or Copy)
Application block. If it is a “brand new” application, you
simply set the script to the variable we have created and
appended to.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_CopyApp.png

Figure 13: Set Load Script block takes an Application
ID and the Script you want it to use

If you do like the idea of “Copy Application” then you would
want to first use the “Get Script” block and start our vScript
variable with the contents of the copied application. Then
keep appending all of the work we did.

Saving the Application
I told you earlier to relax and breath again, that it was
getting much easier. All we have to do now is use the “Save
App” block and give it the ID of our newly created application
that has our newly created (or appended) script in it.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAASetLoadScript.png
https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAASaveApplication.png

Figure 14: Save Application block is super easy and only
takes an Application ID

To Reload or Not Reload, that is
the Question
At this point reloading the application is simply a matter of
choice. For the sake of my video I certainly wanted to add a
wow factor and have the opportunity to simply open our newly
created application and start working. Seeing the METADATA
already loaded for the data model view was kind of cool. But
it is just a matter of preference. You may prefer to simply
created the application, add the script for it, save it and be
done. Then you can manipulate the script as desired before you
ever actually load data.

Figure 15: Do Reload block allows you to reload the data for
your newly created application so it’s ready to go when you
open it.

Summary
Hopefully this journey was a fruitful one for you. Both in

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_QAADoReload.png

terms of your understand of just how flexible you can get with
your Qlik Sense environment, and in terms of your technical
understanding of how to implement it should you desire to. If
nothing else, keep the link to this post or the video handy so
when someone tells you “Qlik has to pre-load data using QVD
files and we need to read data on the fly”, you can send it to
them. Do a mic drop. And go grab lunch early with a smile on
your face.

Bonus Points
If I did my Qlik Dork “thing” right, then this will seem like
it’s absolutely something you can do. Perhaps even too easy,
and you will feel guilty for allowing your end users to read
data on the fly, but not using your own magical coding chops.
Don’t worry I have a little challenge for you to kick things
up a notch. You probably noticed that in my example I simply
used “Select * From Table” as the pattern to iterate through
all of the tables. For the Metadata I simply added Table
Descriptions and not field Metadata. Clearly not what you
would want to do in the real world. Right?

So, feel free to utilize my example to simply get started …
and then try and add in the ability to list the columns for
each table just the way that would be done if you used the
Select in the Load Script from a connector. “Load Field1,
Field2, Field3; Select Field1, Field2, Field3 from Table” kind
of thing. Hint: The Snowflake Describe Table query is what you
will mostly like want to use. Something like:

Describe Table “GENERALHOSPITALDB”.”dbo” .”Accounts”

You could use that in the way I pulled the table comments to
create a mapping load for the field comments as well.

You can execute that command with the Snowflake “Do Query”
block inside of your automation if you want so that you can
have a list of fields to loop over so instead of Select *, you

https://docs.snowflake.com/en/sql-reference/sql/desc-table

can load the field list. If you do this, I would recommend
that you have 2 variables: vLoad and vSelect, so that for each
field you can simply append accordingly.

Look at you out there getting ready to complete this bonus
activity, to read Snowflake data and metadata on the fly. You
go with your bad self.

Figure 16: Do Query block
can be used to fire a
command to Snowflake and
get a list of the fields
for any table.

https://qlikdork.com/wp-content/uploads/2025/02/LiveData_DoQuery.png

