
Diving into Parquet
written by DaltonRuer | January 31, 2025

Diving into Parquet: It’s Not Just
About the File Format
I’m finally diving into something I’ve been hinting at for a
while: Diving into parquet files. We’re going to look at using
parquet both internally and externally for storage because:

As I shared in my Qlik Community Post Making Sense of
QVD Files, it’s not about the file format, it’s about
the concept of reusing data.
 I want to prove that you can share the intellectual
property in your applications, regardless of format, for
reporting and other uses.

While I will be describing the progression with a few
screenshots embedded, the video at the bottom is your way to
actually see everything in action. I know this is knew and I
didn’t want you think I was faking anything with manipulated
images. �

Setting the Stage: Data and
Metadata
Let’s get oriented. In my example, I have a simple data model:
patients and encounters.

https://qlikdork.com/2025/01/diving-into-parquet/
https://community.qlik.com/t5/Member-Articles/Making-Sense-of-QVD-files/ta-p/2503549
https://community.qlik.com/t5/Member-Articles/Making-Sense-of-QVD-files/ta-p/2503549

Figure 1: Screenshot of inline data load script to understand
the data values and metadata being used

I have four patients and five encounters. A couple of my
patients, Dan The Wizard and Levi the man Turner, are so
healthy they have no encounters at all. As I’ve previously
discussed with you about metadata, our AI engine interprets
their “cognitive wisdom” as 999 years old. This highlights the
importance of metadata, which helps me understand my data
fields correctly. Without it I might think I have really bad
data. In my storing application (Figure 1), I’ve set up
comments, table maps, field maps, and tag maps. This metadata
travels with QVD files when the data is stored. When I read
the data back (Figure 2), I can see my table comments, field
comments, and tags.

https://qlikdork.com/wp-content/uploads/2025/01/ParquetStoreDataModel.png
https://qlikdork.com/2025/01/the-importance-of-metadata/

Figure 2: Data Model View of the simple inline data we created
in figure 1.

Switching Gears: From QVD to
Parquet
Now, here’s where it gets interesting. I’m going to switch
from QVD to parquet format. I’m still using the same
data—patients, encounters, table maps, comment maps, and field
tag maps. But this time, instead of storing to a qvd file, I’m
going to store to parquet, using the DataFiles, in the Dalton
space. I’m creating files named Patients.parquet and
Encounters.parquet. When I store to parquet format, my data
model in the storing application remains the same, as you’d
expect, with all the metadata intact so nothing to see there.

https://qlikdork.com/wp-content/uploads/2025/01/ParquetReadDataModel.png
https://qlikdork.com/wp-content/uploads/2025/01/StoreToParquetLoadScript.png

Figure 3: You can store to parquet just like you do with QVD
by changing the extension and the format to parquet

When loading the data from parquet files instead of QVD, I
still get my four rows of patients and five encounters. The
data is all there. However, if I check my data model viewer, I
have a problem: I’ve lost all the metadata.

Figure 4: To read from Parquet you simply change
the file extension you are reading from and the
format

https://qlikdork.com/wp-content/uploads/2025/01/ReadfromParquet.png

Figure 5: Data Model View of application that read from
Parquet shows all of the data, but the metadata is missing

Parquet simply doesn’t retain the metadata. Therefore, if you
are using files internally and need to keep your metadata,
sticking with a QVD file format is likely your best option.
Metadata aside, if I am just looking at the visuals, they
remain the same whether I read from .qvd or .parquet files.
The end user doesn’t need to know, or care about, the
underlying architecture.
✨✨✨ Good time to notice that Dan Wizard Pilla and Levi TheMan
Turner have no encounters, and that EncounterID 103 has an
associated PatientID that doesn’t actually exist. Keep note in
your head of this as it will be important soon. Now back to
post. ✨✨✨

https://qlikdork.com/wp-content/uploads/2025/01/ReadParquetDataModelNoMetadata.png

Figure 6: Screenshot of a some filter panels and table object
showing the data read in from parquet tables

Taking It External: Storing Parquet
in S3
While end users don’t care about architecture, your boss’ boss
just may. He might insist on not retaining so much IP inside
of proprietary Qlik QVD files. I just showed you could do
that. Yay.
But you know that boss’ bosses can be bossy and their next
edict is that it has to be shareable outside of your Qlik
environment. Don’t panic that’s easily doable.
Let’s go ahead and store those Parquet files into an Amazon S3
bucket, rather than our data files library. Agility is the
whole purpose of the libraries to begin with. I can’t help it
if you were lazy and just always picked the default
“DataFiles” library. �
I’m using the same four patients, five encounters, and
mappings. This time, I’m storing to an Amazon S3 bucket
(Figure 7).

Figure 7: Storing both the Patients and Encounters table into
a single parquet file called HealthMart

Did you actually read the image or did you just scroll your
eyes over it. Because if you read it, and understood the
implications in it … your mind would be blown. �
In my previous videos and my Community Post: Making Sense of

https://qlikdork.com/wp-content/uploads/2025/01/ReadVisual.png
https://qlikdork.com/wp-content/uploads/2025/01/StoreToS3.png
https://community.qlik.com/t5/Member-Articles/Making-Sense-of-QVD-files/ta-p/2503549

QVD files , I highlighted over and over that QVD files were
“Qlik Virtual Data warehouse tables.” They are 1 for 1 for
internal tables. But wowza, when you store to Parquet there is
no 1 for 1 table limit. As it might be your “Gold/Mart” layer
when you store it … the cool thing is it can actually be a
“MART” that contains all of the needed tables.
Just like a Data Mart, it has 1 center and is most likely a
Star schema. If you want to dive into this, the first file
must be the center of that star or snowflake in your Qlik data
model. If I have other data islands for example, I can not
write those tables into the same parquet “mart.” Notice in
Figure 7, that rather than naming the file like I normally
would with a table name … I actually called my “HealthMart.”
Maybe, just maybe … your boss’ boss edict to externalize was
actually a good thing for you. Sure you were ticked off at
first, but now you just might feel like a superstar. Just like
Qlik Data Product rolling up the entire data model for easy
end user consumption … you’ve encapsulated all of the tables
into 1 parquet file.
My loading app is going to change to read externally from the
Amazon S3 bucket and when I choose to read the
“HealthMart.parquet” file (Figure 8) I see something
interesting, and perhaps confusing.
Notice that I don’t see a Patients table or an Encounters
table. Instead I see a “HealthMart” table that sure looks like
my Patient data. And another table called
PatientID:Encounters. Even more interesting perhaps is the
surrogate that got created “%Key_PatientID:Encounters.” Are
those good things?

Figure 8: Load select from our Parquet mart, not table, file
showing that much like an Excel load with multiple worksheets
you can choose which tables in the mart you want. Also shows
that the tables aren’t the same table names we stored them as.

https://community.qlik.com/t5/Member-Articles/Making-Sense-of-QVD-files/ta-p/2503549
https://qlikdork.com/wp-content/uploads/2025/01/ReadMartLoad2.png

Mart vs Table
When we stored the data “as a mart” not as a “table” Qlik
chooses to use the name we give the file for that center
spoke. We called the file “HealthMart.Parquet” and it said
“rock on Qlik Dork I will refer to your data mart as
“HealthMart.” That’s a great thing.
Understanding the other … is a bit more complex. But if I do
the job right, you will understand it in no time. Within
Qlik’s Associative Engine we have no problem at all with the
fact that we have 2 patients with no encounters, and an
encounter that had no patient. But If we are “externalizing”
our data beyond Qlik’s walls … then we can no longer think
with an Associative Engine mindset. We have to flatten the
data out, the way a SQL VIEW would look. Within Qlik you don’t
have to think about Inner, Outer, Left, Right, Upside down or
inside out joins. But in a Data Mart world you do again.
So, let’s take a quick look, just for giggles and grins at the
Encounters “table” that is in our mart in Figure 9. A few
things you need to notice: There are only 4 valid encounters
listed, what happened to 103 and why are there 2 blank
encounters but values for that weird surrogate key?

Figure 9: Load Select for the Encounters table data read from
our parquet mart.

Most Data Mart generation systems create the surrogate key to
utilize to join facts/dimensions not knowing if you might
perhaps change the value. Maybe Dalton Ruer with PatientID 1
today, becomes 000001 tomorrow. Using this surrogate key value
instead allows the relationships in the marts to keep on
ticking without having to cascade changes to tons of tables

https://qlikdork.com/wp-content/uploads/2025/01/ReadMartEncounters.png

down the road. Maybe we wouldn’t want anyone to see the actual
PatientID field because it was PII. Well that surrogate key is
sure handy dandy. Thanks for elevating our game Qlik.
The question we are left with then is “why do we have 2 blank
encounter rows with Dan and Levi’s patient surrogate key?”
Since Patients was the center of the star, we MUST RETAIN all
of it’s information. Qlik has flattened out that in-memory
Associative Engine version of Encounters into more of a SQL
view, and like a Left Join with the Patients information. We
end up with 2 blank encounters but the
%Key_PatientID:Encounters surrogate value. And just like a
Left Join we do not return Encounter 103. Aha. Now I remember
why I fell in love with the Associative Engine 15 years … I
hated dealing with the symptoms of joins when the underlying
data wasn’t perfect and had referential integrity. Almost like
I created that inline data many posts earlier for this very
reason.�

Swapping Left and Right
I hear you Mr./Mrs. Smarty Pants. Yes I did change my mart
storage to store Encounters and then Patients. And you are
100% correct … I do get to see all of my encounters.

Figure 10: Screenshot of load select where I created the
parquet mart with encounters first and patients second

Then Encounters becomes the LEFT side of a LEFT JOIN … and we
end up with an entirely different issue with our Patients
table. Dan and Levi, the stars of my AI Cognitive Wisdom Age
calculation to demonstrate the importance of metadata are
entirely gone from my system. Like I said … I hated dealing
with the symptoms of joins when the underlying data wasn’t
perfect and had referential integrity problems like I
introduced. Be sure and consider this and other limitations of

https://qlikdork.com/wp-content/uploads/2025/01/ReadEncountersFirst.png

storing to Parquet files in general. Especially keep this in
mind if you are going to try and create a Parquet MART.
I entitled the post Diving into Parquet and we just dove.
Depending on your data it might look like a reverse 4.5
somersault in the pike position with no splash on entry, or it
could look like a belly flop. I merely wanted to point out
that it is an option. Within Qlik Talend Cloud you would
likely use our Data Product to surface a wonderful mart of all
of the required tables. When sending data externally this is
an option you might consider, as long as you understand the
risks. If you have integrity issues, then I strongly suggest
sticking with pure table based parquet files. That way all
your data will travel forward.

Figure 11: Screenshot of the load select focusing on the loss
of patients if we stored encounters into our parquet mart
first

�� If you got excited about the idea of having all of the
parquet tables in one place as a data mart, but really want to
ensure all of your data for all of your tables is maintained;
Don’t give up hope as there just might be an iceberg in the
waters ahead that can make you look like a hero. ��

The Metadata Challenge
Let’s put the referential integrity issues aside, since I
forced them to make a point. We need to get back to the fact
that we lost our metadata when saving to table based or mart
based Parquet files. I really REALLY REALLY think it’s
important that we keep it. If you need a refresher on the

https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/Store.htm
https://qlikdork.com/wp-content/uploads/2025/01/readencountersPatients.png

importance of metadata, please take the time to read my
previous post that I’ve shared multiple times entitled: The
Importance of Metada.
If you agree with me that anyone, including people external to
Qlik should know that the Age field isn’t biological then we
need to solve this problem. Right?
In the previous examples the metadata was created simply using
MAPPING LOADS. That’s in memory only and can’t be shared. But
nobody will think less of us if we make our Metadata a “real
table.” Because “real tables” can be stored. If I
alternatively switch to a real table that contains all of the
information my code would look like this

Figure 12 Screenshot of inline load script using a physical
table store to contain all our metadata that is then read
mapping table to apply the metadata to tables and fields

Solved
I have all the same tagging “maps” that I needed, but now I
can literally just store the metadata table itself into a
Parquet file as well. So, external users can see it, just like
they see .ReadMe or .MD files etc.

https://qlikdork.com/2025/01/the-importance-of-metadata/
https://qlikdork.com/2025/01/the-importance-of-metadata/
https://qlikdork.com/wp-content/uploads/2025/01/MetadataTable.png

Figure 12: Screenshot of store statements saving the tables to
a parquet mart file, and also storing the metdata for the
entire mart to a parquet file as well

Notice my last step it is to simply Drop the Health_Metadata
table because I don’t want a weird data island in the model.
But as a challenge … feel free to comment on any thoughts or
ways you can see yourself actually using that Metadata Island
inside of an application? As you think of ideas … suddenly you
will be loving METADATA as much as I do.

Figure 13: Screenshot of the Data Model view showing our
Metadata table

Reading the Metadata
In my reading application all I have to do is implement the
same basic code structure. Instead of an INLINE statement to
build the metadata, I literally just read it from the file.
Then I still go through and create the maps and then
comment/tag the Tables and Fields. That’s just to easy.

https://qlikdork.com/wp-content/uploads/2025/01/MetadataMart.png
https://qlikdork.com/wp-content/uploads/2025/01/HealthMetadataIsland.png

Figure 14: Screenshot of the load script for an application
that reads the metadata

Video
I realize it’s hard to really grasp these very new concepts by
just reading and seeing images. To that end please feel free
to listen to me while you see the loading actually occuring.

Bonus
Just because I appreciate your actually reading the entire
post I wanted to throw in a little bonus. I wanted you to see
that not only does it all work with external S3 storage and
Parquet … you can track the lineage of it as well. How cool is
that? Now the Dork in me wants to have 2 different storage

https://qlikdork.com/wp-content/uploads/2025/01/ReadMetadataScript.png

applications to see that the two tables in the healthmart file
come from different locations.

https://qlikdork.com/wp-content/uploads/2025/01/LIneageOfParquet.png

