
Creating a Qlik Link Table
written by DaltonRuer | January 5, 2025

Background

Mastering QlikView by
Stephen Redmond

Before I dive into the deep end of walking you through the
process of creating a Qlik Link Table, I want to share a tiny
bit of background.

As I was learning Qlik one of the most impactful things I ever
read came from Stephen Redmond‘s “Mastering QlikView” book. I
was really struggling to grasp the concept of the AGGR
function, which according to so many experts could do all
sorts of awesome things. The problem I struggled with, which
you may as well, was the fact that the AGGR function does all

https://qlikdork.com/2025/01/creating-a-qlik-link-table/
https://qlikdork.com/wp-content/uploads/2025/01/Mastering-QlikView.jpg
https://www.linkedin.com/in/stephenredmond/
https://www.amazon.com/Mastering-QlikView-Stephen-Redmond/dp/1782173293/ref=sr_1_1?crid=11T4C15KX7YF5&dib=eyJ2IjoiMSJ9.Zsdg-htVRP9GOZ51EJPTqoEiob1mzQ3LJktMvUDhiaaH_YZjXBN3DfTug7tz0W7DWZmQlVr3BWdK_7n1VL5YDOrDveQDWs-65CnnS3A32MopvXuPP7L29hIoM-CUrXRyhr_tZRhMRSKpgP71fi_Q2w.xGyr_aKok_7PddGgdf2W3ysf9QvGs1Vg-PczduxO5BU&dib_tag=se&keywords=mastering+qlikview&qid=1735922040&sprefix=mastering+qlikview%2Caps%2C95&sr=8-1

it’s wondrous things IN MEMORY. You can’t see it and I’m a
visual person.

Stephen said something profound to me, that I will soon be
sharing with you in this post. On page 275 he explained that
this invisible in-memory AGGR function contained nothing more
than the data you could visualize in a Straight Table.

� – My mind was blown, and frankly I felt rather foolish for
not realizing that sooner. This Qlik guru was basically saying
“Dalton it’s ok for you to be a visual person and need to see
it first. If you need to do that, on your way to eventually
becoming a Qlik Dork, go right ahead.”

Don’t let the fact that this book is over 10 years old and has
the product name “QlikView” in it dismay you from immediately
placing an order for it, if it isn’t already in your library.
Stephen’s writing style is very much like my own. My theme is
“Let’s Make it Simple” and that is exactly how he explains
everything in the book. Never forget that the engine and
scripting language, behind both QlikView and Qlik Sense are
the same. This is a book that will help you take your
scripting, and data modeling to the next level and I’m sure
you will be able to focus on the code, and not the visuals.
The reason I’m giving a shoutout for the concept of providing
yourself a visual to understand is something I will use
repeatedly within this post.

Setup
In my upcoming post, “Visualizing a Knowledgegraph”, I will
walk through a struggle that required me to change my data
model. The solution couldn’t be obtained without creating a
Qlik link table. Not knowing my audiences familiarity with the
concept, I wanted to provide this resource that they could
refer to, as well an Google searches that they might use. As
you scan the web you will find various terms like “link table”
or “bridge table” each with it’s own nuances and reasons for

creating them. Some are even about performance. They want to
eliminate the hops between entities because just as it takes
you time to walk the data model, it takes the Associative
Engine time to traverse.

For this post, and the hands on aspects of it, I want you to
forget about all of the many nuances, and simply focus on the
primary goal … the ability to connect all of our
Dimensions/Facts keys in one table. While, still retaining all
of the values about the Dimensions/Facts in individual tables.
There is simply no better way to learn than by doing. To that
end, I will be using pure inline scripts to make it easy for
you to copy and paste if you would like to walk through the
examples to ensure this concept is solidly at your disposal.
You will seldom ever need this, but if you face an issue where
you will need it, I would like you to know you are prepared
and can resolve it.

Before asking you to code the changes to create a “link table”
I will be using Stephen’s great advice and asking you to
visualize what you will get by simply using a Straight Table.
As you will see it is of great advantage throughout the
process.

Associative Engine
Many people getting started with Qlik simply think of it as a
data visualization tool. So, in the load scripts they simply
execute a Select clause against a SQL View. The same thing
they would do with any other “visualization” tool. Over time,
they learn, and I sure with analysts would as well, that what
distinguishes Qlik (both QlikView and Qlik Sense) from
everything else, is the Associative Engine. New Qlikkies
realize that while they can execute selects against SQL Views,
they will continue leaving data behind, and thus missing part
of the important organizational story. They begin by bringing
in each table individually as I have below. Again, feel free

to copy and paste this load script to a new application so you
can really follow along and learn. Clearly I have greatly
reduced the complexity of the health data below, as well as
the number of rows.

Patients:
Load * Inline [
PatientID, Name, Age
1, Dalton Ruer, 60
2, Qlik Dork, 30
3, Stephen Redmond,
];

Encounters:
Load * Inline [
EncounterID, PatientID, Arrival, Discharge
101, 1, 12/2/1999 1:42 PM, 12/3/1999 2:17 AM
102, 2, 12/4/2012 3:17 AM, 12/5/2012 1:08 PM
103, 4, 12/17/2023 9:01 PM, 12/17/2023 10:12 PM
104, 1, 4/12/2003 7:16 PM, 4/14/2003 9:04 AM
105, 2, 7/4/2013 8:27 AM, 7/4/2013 10:15 PM
];

If you go ahead and run this script you will see a very very
simple Associative Data Model.

Associative Relationship between the Patients and Encounters
table

https://qlikdork.com/wp-content/uploads/2025/01/SimpleAssociativeDataModel.png

We will have all the Patients and all the Encounters In-
Memory, and we can easily refer to either table when we create
data visualizations because they are “associated” with each
other because the Encounters table contains the key
“PatientID” that links it to the proper patient. If you really
are just learning about Qlik, to Stephen’s point, you can
visualize the associative engine with a simple table
visualization. We have a patient with no encounters (visits)
which is perfectly natural. Stephen is a healthy guy. But we
can also see that we have an encounter with a Patient ID that
doesn’t actually exist. Yikes a referential integrity problem.
But data is data and all we can do is reflect what the source
system contains.

Typical screen showing filters and a table object showing the
data we loaded. Not all patients have encounters and not all
encounters have patients

A simple selection of EncounterID 102 — reveals the nature of
the Associative Engine itself. In the table we only see what
the SQL View would return if we asked for Encounter 102, while
the filters show you that all of the excluded information is
still in memory. It’s just excluded because of the filters.

https://qlikdork.com/wp-content/uploads/2025/01/FirstLoad.png

Typical filters and a table reflecting the status of the
Associative Engine after selection(s) are made

Link Table
For the sake of your time I will move on to how to use a Link
Table in our Data Model, but wanted you to understand why so
many do stop at the above form of data modeling. It provides
everything they ever dreamed of and more. As I started I have
another post where I explained a really complex scenario where
this form of just purely relying on Associations between all
of the tables didn’t work. I needed something where all of the
“facts/ID’s” existed in a single place … a “link table.” I’ve
very seldom ever come across this need, but absolutely did in
this case. 95% of the time you won’t need to do, what we are
about to do … but when you do, you will now be prepared.

Before we go through the coding to create it … I want you to
visualize what our “link table” should look like so create a
table object and simply include the PatientID and then include
EncounterID. Not only is a Table object good for visualizing
what to expect from AGGR statements, it’s ideal for seeing the
relationships/links managed by the Associative Engine:

https://qlikdork.com/wp-content/uploads/2025/01/Select102.png

Simple Table object with values we
would expect to see when we create
a link table that contains the keys
to our facts

Coding a Link Table
Coding this is pretty straightforward. The first thing you
want to do is simply populate the table, in the same way you
built the visual table. You include all of the patients, then
you “join in” to include all of the encounters. Go ahead and
replace your code with the following and load the data.

Patients:
Load * Inline [
PatientID, Name, Age
1, Dalton Ruer, 60
2, Qlik Dork, 30
3, Stephen Redmond,
];

Encounters:
Load * Inline [
EncounterID, PatientID, Arrival, Discharge
101, 1, 12/2/1999 1:42 PM, 12/3/1999 2:17 AM
102, 2, 12/4/2012 3:17 AM, 12/5/2012 1:08 PM
103, 4, 12/17/2023 9:01 PM, 12/17/2023 10:12 PM
104, 1, 4/12/2003 7:16 PM, 4/14/2003 9:04 AM

https://qlikdork.com/wp-content/uploads/2025/01/LinkTableLookLike.png

105, 2, 7/4/2013 8:27 AM, 7/4/2013 10:15 PM
];

LinkTable:
Load PatientID
Resident Patients;

Join (LinkTable)
Load PatientID, EncounterID
Resident Encounters;

Synthetic Key
Well cruddy crud crud. The fact that we now have both
PatientID and EncounterID in the Encounters table, as well as
our new link table has caused a Synthetic Key.

Data Load trace indicating that a Synthetic Key has
been encountered

https://qlikdork.com/wp-content/uploads/2025/01/SyntheticKeyIssue.png

We are trying to simplify things, not make them look even more
complicated and confuse everyone if they look at our Data
Model.

Data Model Viewer showing the Synthetic Key
problem that arises if multiple tables
contain an association for multiple field
names instead of just one

We can avoid the Synthetic Key by simply adding a single line
of code at the bottom of the script

Drop Field PatientID From Encounters;

I could have added that initially, but let’s face it … you
would have wondered why in the world it was there. Now you
know, and when you see an issue in the future you will be
reminded how to resolve it. �

Link Table Data Model
Go ahead and load the data. After reloading your script you

https://qlikdork.com/wp-content/uploads/2025/01/LinkTableSyntheticJoin.png

will have the following data model. The Data Preview at the
bottom of the script editor reflects exactly what we
visualized as our target.

Data preview in the Load Script showing
our LinkTable is correct

If you were to look at the Data Model view, you would see that
we now have a clean data model. One in which both tables still
maintain their “key field”/”ID” so we can access all of the
values for any specific Patient or Encounter. The biggest
difference is that the LinkTable now contains the
relationships between the Patients and the Encounters that
they had.

https://qlikdork.com/wp-content/uploads/2025/01/LinkTablePreview2.png

Corrected Data Model Viewer image of a clean data model
where are two facts are linked

More Complexity
Now let’s add some more data into our application. Let’s face
it … two tables seems like a weak example. But since my goal
is to make things simple, it was an easy way to start without
the need to become overwhelmed. In my post about Visualizing a
Knowledgegraph I used an illustrate with a ton of
tables. Don’t worry I won’t have you add the hundreds of
tables that we might really need in Healthcare, we will just
add two more. We have a table of Diagnosis codes, problems
that patients can have. On any given encounter, a patient
might be diagnosed with 1 or more diagnosis codes. The
diagnosis would happen at some time, and be diagnosed by

https://qlikdork.com/wp-content/uploads/2025/01/LinkDMViewer1.png

someone and someone treatment might be prescribed to take care
of the issue. So, let’s add those to your load script and load
the data.

Diagnosis:
Load * Inline [
DiagnosisID, Diagnosis Description
999, Mountain Dew Addiction
998, Snicker Bar Addiction
];

EncounterDiagnosis:
Load * Inline [
EncounterID, DiagnosisID, When, ByWhom, Treatment
101, 999, 12/2/1999 3:07 PM, Doctor 1, Big Gulp
101, 998, 12/2/1999 3:08 PM, Doctor 1, King Size Snickers
102, 998, 12/5/2012 11:13 AM, Doctor 1, Baja Blast IV
Injection
104, 998, 4/13/2003 7:13 AM, Doctor 2, Double Gulp
];

Go ahead and add that script, at the bottom of your code and
do a reload. You will see that your data model should now look
like this. While you could live with this hybrid, Link Table
model mixed with pure Associated Model, we want to change it.

Data Model Viewer reflecting that the Diagnosis table and the
table showing which Diagnosis were made on each Encounter

Naturally we want that Encounter Diagnosis information to be
part of our LinkTable. Before we try to build it, let’s
imagine what that would look like, by simply adding the
DiagnosisID to our simple Table object:

Don’t you love visualizing the goal before trying to do all
the mental gymnastics for something you can’t see? Good thing
it’s super simple to do. Go ahead and add the following and do
a reload. Notice how I was a nice guy this time, and helped

https://qlikdork.com/wp-content/uploads/2025/01/DiagnosisDataModel.png
https://qlikdork.com/wp-content/uploads/2025/01/DiagnosisGoalBeforeLink.png

you avoid the Synthetic Key that would have been created had
you not dropped the EncounterID field from the
EncounterDiagnosis table. �

Join (LinkTable)
Load EncounterID, DiagnosisID
Resident EncounterDiagnosis;

Drop Field EncounterID from EncounterDiagnosis;

Yeah! A simple Preview at the bottom of the load script
reveals that we met our goal. I guess we are done and should
head to an early lunch.

Data Preview in the load script editor reflects we matched our
expectations

Not so fast
Just for giggles and grins, let’s go ahead and add some of
that new information to a simple table just to make sure our
users will have what they expect.

A table object with all fields indicates we have a Cartesian

https://qlikdork.com/wp-content/uploads/2025/01/PreviewForTheWin.png
https://qlikdork.com/wp-content/uploads/2025/01/Cartesian.png

product

Well that’s certainly not right. Each combination of Patient
and Encounter for Dalton Ruer and for the Qlik Dork show all
of the diagnosis information from all of their encounters.

I don’t get it!!!!! Our LinkTable reflected exactly what we
previewed in a Table object we should have been fine.
Right?????

So, what happened? Always remember … the Table object shows
the DISTINCT values of the dimensions you choose. Our preview
table only contained the PatientID, EncounterID and
DiagnosisID. Even though the LinkTable itself now shows the
right distinct values that we expected. And our Data Model
Viewer looks super clean the problem was a logic one.

The “Key” for the EncounterDiagnosis “fact” isn’t really
EncounterID or DiagnosisID. It’s really both. But we treated
it as though it was only the DiagnosisID. Creating a Cartesian
product where all Encounters display all of the new
Encounter/Diagnosis information.

Close examination of the Data Model Viewer shows
we used the wrong field for the association

Resolution(s)
Better order in lunch, or grab a Snickers bar because we need
to resolve this. There are really 3 distinct methods we can
take to resolve it.

Option 1
Simply go back to the hybrid model, where we do nothing with
Diagnosis and the Link table at all. While it avoids the
Cartesian issue, and gets us to lunch right away … please
don’t do this.

Option 2
If your end user tells you “I will never, ever, in a million
years need to see Diagnosis information other than as it

https://qlikdork.com/wp-content/uploads/2025/01/DiagnosisModelCartesian.png

relates to Encounters” … then you are free to greatly simplify
things. You can simply load the Diagnosis information as a
Mapping Table, and then use a Preceding Load and do ApplyMap
for the EncounterDiagnosis table.

Diagnosis:
Mapping Load * Inline [
DiagnosisID, Diagnosis Description
999, Mountain Dew Addiction
998, Snicker Bar Addiction
];
EncounterDiagnosis:
Load
EncounterID,
 ApplyMap(‘Diagnosis’, DiagnosisID) as

DiagnosisDescription,
 When,
 ByWhom,
 Treatment;
Load * Inline [
EncounterID, DiagnosisID, When, ByWhom, Treatment
101, 999, 12/2/1999 3:07 PM, Doctor 1, Big Gulp
101, 998, 12/2/1999 3:08 PM, Doctor 1, King Size Snickers
102, 998, 12/5/2012 11:13 AM, Doctor 1, Baja Blast IV
Injection
104, 998, 4/13/2003 7:13 AM, Doctor 2, Double Gulp
];

Since EncounterID is already a part of the LinkTable … we are
good to go. Right?????

Data Model Viewer using the EncounterID instead of the
DiagnsosisID for the LinkTable

Option 3
The reality is that option 1 simply kicked the can to let us
grab lunch, but now we need to resolve it. Whenever you know
you are simply doing something in a hurry, experience will
prove that you will spend more time and have more headaches in
the future if you do it right.

I prefaced Option 2 with “your end user said never, ever, in a
million years” which we all know really translates to “until
next week when I change my mind.” Besides, it is somewhat
misleading to have the EncounterDiagnosis information
associated by EncounterID. Because as mentioned … the real
“fact” key for EncounterDiagnosis is actually a concatenation
of the EncounterID –AND– DiagnosisID. We neglected to deal
with that. A “fact” KEY needs to be unique. PatientID’s are
unique and point to a single patient in the Patient Table.
EncounterID’s are unique and point to only 1 Encounter in the
Encounter Table. Yet the EncounterDiagnosis is actually linked
in a 1 to many manner.

https://qlikdork.com/wp-content/uploads/2025/01/ApplyMapSoNodiagnosis.png

Do it right the first time
So, now let’s actually deal with the issue in the way it
should be dealt with all along. Ensuring that our LinkTable
contains all of the relevant FACT KEYS in a 1 to 1 manner.
Since our EncounterDiagnosis is really “keyed” on EncounterID
and DiagnosisID we need to concatenate them. This is one of
the “nuances” I mentioned you would find if you search for the
topic. Notice that I’m using a preceding load for the
EncounterDiagnosis table. We would NOT want the table to
actually contain the EncounterID field so we simply alias that
field. We could also ignore it all together.

Next we concatenate the EncounterID and the DiagnosisID to
form the real concatenated key that the data should likely
contain.

Finally we want to add that concatenated key to our LinkTable.

Diagnosis:
Load * Inline [
DiagnosisID, Diagnosis Description
999, Mountain Dew Addiction
998, Snicker Bar Addiction
];
EncounterDiagnosis:
Load
 EncounterID as Encounter%,
 DiagnosisID,
 EncounterID & ‘-‘ & DiagnosisID as

EncounterDiagnosis_KEY,
 When,
 ByWhom,
 Treatment;
Load * Inline [
EncounterID, DiagnosisID, When, ByWhom, Treatment
101, 999, 12/2/1999 3:07 PM, Doctor 1, Big Gulp
101, 998, 12/2/1999 3:08 PM, Doctor 1, King Size Snickers
102, 998, 12/5/2012 11:13 AM, Doctor 1, Baja Blast IV
Injection
104, 998, 4/13/2003 7:13 AM, Doctor 2, Double Gulp

];
Join (LinkTable)
Load Encounter% as EncounterID, EncounterDiagnosis_KEY
Resident EncounterDiagnosis;

Now we have truly met our goal to have a LinkTable which
contains all of the relevant dimensional keys. If you did
trust that your end users would never, ever, in a million
years want to see Diagnosis that have never been used, then
feel free to do the apply map as in Option 2, so that you
would have a pure Star Schema.

Data Model Viewer of our corrected LinkTable which links to
all “facts” in a 1 to 1 manner

Our LinkTable ends up

Creating a Qlik Link Table Summary
95 times out of a 100 you can accomplish your visualization
goals by simply using the Associative data modeling directly,
and never need a Qlik Link Table.

In my other post, on Visualizing a Knowledge Graph, the
problem was that I did in fact HAVE TO use a Qlik Link Table.
And realized that when I wrote it, I needed this post as a
primer for those who have never implemented one.

The absolute “KEY” to remember when creating Qlik Link Tables
is that they should link to all of your “facts” in a 1 to 1
manner. If you always focus on that thought, you will avoid a

https://qlikdork.com/wp-content/uploads/2025/01/CorrectedDataModel_ConcatenatedField.png

lot of other issues introduced. If you need a concatenated key
field to do it … then just create it as part of the data load.

While you may never need it, hopefully, you are now armed with
a new skill or two. As well as what is one of the best books
ever written (in my opinion) to help you add even more skills
to your repertoire.

Study Guide
I’m going to try something I’ve never done before as an
additional way to help those who are really trying to grow
their skills by providing this study guide section. I will
provide some questions about the material, as well as the
answers to them if you scroll further.

Questions
What is the primary function of Qlik’s Associative1.
Engine?
Why might a simple SQL SELECT statement be insufficient2.
when loading data into Qlik?
Describe the situation in the source material where a3.
referential integrity issue was encountered.
What is a Qlik Link Table and what is its primary4.
purpose?
What issue arises when both the Encounters table and the5.
LinkTable contain both PatientID and EncounterID?
How can the synthetic key problem be resolved?6.
Explain the Cartesian product problem that occurs after7.
adding the Diagnosis and EncounterDiagnosis tables.
What are the three options presented to resolve the8.
Cartesian product problem?
Why is Option 2 (using a Mapping Load and ApplyMap)9.
potentially problematic?
Describe the “Do it right the first time” approach10.
(Option 3) and why it is considered the most robust

solution.

Study Guide Key

Qlik’s Associative Engine enables the exploration of1.
relationships between data in memory, allowing users to
make selections and see how those selections impact
other data points across various tables.
A simple SQL SELECT might not capture the rich2.
relationships between data tables that Qlik’s
associative engine leverages. It might also leave out
data that is important for understanding the complete
story within the data.
The source material shows an encounter record3.
(EncounterID 103) linked to a non-existent patient
(PatientID 4), highlighting a data inconsistency.
A Qlik link table is a central table containing keys4.
from various fact tables. It serves to establish
connections between different data elements and simplify
complex data models.
The presence of the same field combination (PatientID5.
and EncounterID) in both the Encounters and LinkTable
leads to a synthetic key issue, creating ambiguity in
the data model.
Dropping the redundant field (PatientID) from the6.
Encounters table resolves the synthetic key problem,
ensuring a clear and unambiguous data model.
Adding Diagnosis information without a proper key7.
results in a Cartesian product where each
Patient/Encounter combination incorrectly displays all
diagnoses. This occurs because the distinct values shown
in the initial preview table don’t reflect the actual
relationships in the data.
Option 1: Revert to a hybrid model (least desirable),8.
Option 2: Use Mapping Load and ApplyMap (potentially
limiting), Option 3: Concatenate keys for accurate
representation (most robust).

Option 2 relies on the assumption that users will never9.
need to analyze unused Diagnoses, which might prove
inaccurate in the future. It also creates a misleading
association based on EncounterID instead of the combined
EncounterID and DiagnosisID key.
Option 3 involves concatenating EncounterID and10.
DiagnosisID to form a unique key for EncounterDiagnosis,
ensuring a 1-to-1 relationship in the LinkTable. This
accurately reflects the underlying data structure and
prevents future issues.

