
LLM Fine-tuning
written by DaltonRuer | October 19, 2023

My Journey
I began this blog 9 years ago and was honest in my About
statement that my intent was to share my journey as I was
learning more and more about Data Visualization and Data
Analytics. Most importantly … that I was far from an expert.
I’ve never updated my about statement because I still don’t
consider myself an expert.

While I may soon update the statement to include the field of
Generative AI, I still want to be transparent … If you are
looking for an expert in the field, you should find another
blog/pod caster. I am literally in the infancy, or slightly
above that, in my journey into the field of Generative AI.
This week mas marked an early milestone in my development so I
wanted to share while I was in the midst of my happy dance.

Learning Path

Over the course of my 39 year IT career, I have taken
countless training courses. I’ve also created countless
training courses. So, when I emphatically say that the Google
training courses for Generative AI courses are top notch, I
mean it. Unlike many others I went through, the Google
material is very practical and are clearly designed to
actually help you learn, and prepare you with confidence for
the next course. As an experiential learner I was chomping at
the bit to transition the watching level of learning, to the

https://qlikdork.com/2023/10/llm-fine-tuning/
https://qlikdork.com/about/
https://www.cloudskillsboost.google/
https://www.cloudskillsboost.google/

next level via hands on learning.

One day while scrolling through my Linked In feed I came
across a post from friends Piero Molino and Travis Addair who
I met through a Linux Foundation AI & Data workgroup. I knew
they had transitioned in their careers and had formed a
startup AI company. Honestly, I had no real idea what they
were doing until I saw the post. I knew it was AI related, but
literally had no clue it was a Declarative ML framework. It
was an invitation to watch a recording they had just done for
their company Predibase. The webinar was on how to fine-tune
an Large Language Model (LLM). For my learning path, the
timing couldn’t have been better. Not only was my interest
piqued even further, they actually made it look easy. As
opposed to previous webinars I watched from others, that
really turned into marchitecture slide presentations.

Jumping in to Fine-tuning Head First
That header sounds so brave so let me honest; There was a
clear and present fear in my mind that I was simply too old to
try and do this.

That they hype was right and that old time programmers
like me would be replaced in 2-3 weeks.
That perhaps, I should just look forward to retirement
in a few years and be happy that the field of coding
lasted as long as it had.
Countering that fear was the same curiosity that I had
when I began my career 39 years ago. That rather than
looking forward to retirement and fearing it, Generative
AI might just rejuvenate my career.

So armed with enough knowledge to be dangerous, a growing
curiosity and my never give in to fear mentality, I set out to
actually jump in and try fine-tuning an LLM. Before I go
further I need to make it clear, my goal was to fine-tune a
model to generate code. In order to ensure I was actually

https://www.linkedin.com/in/pieromolino/
https://www.linkedin.com/in/travisaddair/
https://predibase.com/resources
https://predibase.com/resources

training a model, and not just piggy-backing on work done by
others, I chose to create my own Qlik Dork coding language.

I know that sounds ridiculous, but the truth is fundamentally
I am a developer and narrowing scope to control variables is
deeply engrained. Quite simply I not only wanted to, but
needed to, ensure that what I got back from prompts was based
on the training I did. If I had chosen any of the dozens of
languages I had worked with, I would never be positive that
the results were actually from my fine-tuning. So Dork Script
was born.

Qlik Dork Scripting Language
In Dork Script if you want to get the total of all values in a
field called Sales you would use the syntax: QDSum([Sales]).
The brackets are part of my syntax because if you have a field
called Net Profit (notice the space in the field name) I
wanted my Dorky compiler to be able to handle it so you would
code QDSum([Net Profit]).

Alright I will be honest there is no Dorky compiler as Qlik
Dork script doesn’t actually exist. But the beauty for my
learning path, and yours, is that it doesn’t have to. All you
have to do is make it exist in TEXT form so that you can test
whether or not your fine-tuning is actually working. I think
my mythic language is unique enough that if the tuning doesn’t
work, it will be obvious.

Fine-tuning needs Data
One way to fine-tune models is by providing a data set. The
term itself confused me, and perhaps has confused you if you
have seen posts/webinars in the past. “I don’t want to give
you my data I just have my make believe coding syntax” is what
I thought. But even that is in fact data. A very simple form
of table that involves 2 basic columns: One called Instruction
and one called Output. In other words what instruction/prompt

someone might ask, and what the intended output would be when
the instruction is passed. So my instruction was “Give me the
total Sales” and my output was “QDSum([Sales]).”

Not much of a language so when I created a CSV to provide as
the training set I added a few more functions like QDCount and
QDAvg with the appropriate instruction(s). I chose to utilize
Predibase because as I shared they made it look easy. Within
their SaaS based solution all I had to do was upload my
training set.

Notice in my image that it is training set 2. My original
training set was an epic failure. The LLM totally hallucinated
and all I got in result to my prompt was garbage.

https://qlikdork.com/wp-content/uploads/2023/10/ProvideDataSet.png
https://towardsdatascience.com/llm-hallucinations-ec831dcd7786

After executing the training step, it took my 3 rows of input.

I verified that the model was in fact exist in the Predibase
catalog.

So, why was it hallucinating rather than providing the
wonderful Qlik Dork expression I had hoped in response to my
prompt?

“You need more data”
Are the exact words that Connor McCormick, Predibase Data
Scientist, shared with me when I asked him why my training
results went so horribly wrong. Almost like my 3 rows of
training data didn’t provide enough for the LLM to be able to
respond correctly. Embarrassing to admit, but of course 3
rows of data wasn’t enough to train a giant LLM on my brand
new Qlik Dork language. I needed more. In fairness to me, I
did tell you up front I was going to share as I learned.

https://qlikdork.com/wp-content/uploads/2023/10/HallucinatingOutput.png
https://www.linkedin.com/in/connor-mccormick3/

The story gets worse my friends. You see I modified the
training set and then added 2-3 more ways to call each of my
made up Qlik Dork script expressions and tried and failed
again. Connor again repeated, this time live on a call, that I
needed more data. “But Connor I can’t hand type hundreds and
hundreds of examples. That would take me forever.” Thinking
like a data scientist, not like a newbie trying to rapidly
train an LLM on a fictitious scripting language, Connor said
“I didn’t say you needed to hand type it. Let me show how to
have the training data generated for you.” Well now my head
was spinning.

I stammered – “Wait a minute. Are you suggesting that we could
use Generative AI to generate the training data set that I
need to fine-tune an LLM?” “That’s exactly what I’m saying”
was his response.

When you break it down ,my statement “Give me the total Sales”
there are really 2 parts to it:

The way the desire is made known, ie “Give me the1.
total”
The field that will be utilized, “Sales”2.

So I got busy with my trusty Chat GPT session and simply said
“Help an old man out in understanding how in the world
someone, who isn’t a Dorky developer like myself, might pose
the question.” Ok as you will see in the image, that wasn’t
really how I asked the question I simply wanted to make a
point. Developers ask for things in the way they think. Large
Language Models are trained on millions and millions and
millions of questions that … this is crazy … normal, average,
ordinary business users ask. I may have gotten there via an
epic failure the first time or two … but once I got there, it
was profound.

Now I had 1+20 alternatives for the instruction piece, all of
which then had the same output “QDSum([Sales]).” I then
repeated the process for count and average. By the way, I was
super fascinated to see the the ways the ask was framed for
average and count. Just seeing the phrases reminded me that
these are in fact Large “LANGUAGE” Models. Voila in moments,
my 3 rows of training data had magically became 63 rows of
training data.

Guess who was feeling pretty proud of themselves? ME. But I
realized I had only had 63 ways of asking for the total,
average and count for a single field called Sales. I just

https://qlikdork.com/wp-content/uploads/2023/10/GenerativeAIProvidesAlternatives.png

needed more field names. But where would I get them? Of course
I asked for them. Notice how I asked the question “for
healthcare data.” I also asked for many other industries.
Guess how I got the list of industry names to ask for. You are
so right, I asked Chat GPT for the industry names and the
results were spectacular. I had a great least of fields with a
single word, two words and three words.

Now I had 63 different ways to ask for total, avg and count
and I had a massive list of field names that I could use. If
you use Python you could quickly code a script to replace
sales with Patient ID, Address etc., as Connor demonstrated
for me.

I chose to use Qlik Sense because after all, I am the Qlik
Dork. Below you will see a sample of what my script generated.
Notice that I also added another spin to my generated training
set, for my make believe language. How did I know if when

https://qlikdork.com/wp-content/uploads/2023/10/GenerativeAIProvidesFieldNames.png

prompting someone might ask for “QD Script” or “Qlik Dork
code” or “Qlik Dork expression?” The reason I used a script
was because I needed to replace the field name wherever it
might exist in the instruction as well as replacing it in the
output. Folks I’m too lazy to try and do all of that matching
by hand.

I couldn’t possibly know so I added randomly chose for each
questions/field name pairs to use different flavors.

Execution
While Predibase offers a user interface to do the training I
chose to do it the coding way. Just so I could feel good about
myself as a programmer before Generative AI totally replaces
me. I used the Google Colab interface that serves up Jupyter
notebooks. But ow you implement it is up to you but I wanted
to show the simplicity.

There are 2 steps I had to perform whether I was trying to do
the fine-tuning or preparing to prompt. The wonderful thing
about Python is that rather than taking a floppy disk with the
software and installing it to a computer, all I had to do was
provide the instruction to install Predibase. However it
needed to do that. From wherever it needed to do that. And for
fun hide all of the gory details from me by doing it quietly
so I could just enjoy the magic. The second step is to simply
instantiate a Predibase client from the software using my
assigned API Token.

https://qlikdork.com/wp-content/uploads/2023/10/QDScriptFileExamples.png

Willing to bet you thought it would be much harder to get
started than that. The third step was then to load the
training data that I had used Generative AI to help me create.
That is made easy by simply asking the Predibase Client I had
just instantiated to go get it from the “file_uploads” folder
in my Predibase tenant. Then came the part that I’m glad was
already put into a template notebook for me. I needed to
create a prompt template so the training new what it was
supposed to be being trained to do.

Notice that as part of the template I identified the actual
input field for my ‘questions’ as {instruction}. I didn’t have
to name my input field that, but hey it made sense to me so I
would really understand what was going on. Next notice that I
tell it that I want to use Llama-2-13b-hf LLM. You will find
all kinds of models out there, some are not “fine-tunable” but
that one is. Once I ran that instruction it queued up a GPU to

https://qlikdork.com/wp-content/uploads/2023/10/Predibase-Steps1_2.png
https://huggingface.co/meta-llama/Llama-2-13b-hf

work on, did all of the pre-processing and did the training to
create my Qlik Dork Script Adapter. [Yes version 2 since
version 1 was such an epic failure because I didn’t provide
enough data. Quit trying to make me feel bad.]

At that point I now had a trained model in place for this
remarkable, never ever used, Qlik Dork scripting language.

https://qlikdork.com/wp-content/uploads/2023/10/Predibase-FineTuning-Steps3_4.png

Prompting
As I shared in the Execution step, the first 2 steps are
always to ensure Predibase is installed and instantiate a
client to work with. For prompting my trained model, there are
a few next steps that I could take:.

Step 3 is to load the foundational LLM model. Please notice
that I’m loading the llama-2-13b model, not the -hf version I
trained from. The -hf version is for fine-tuning where now I
need the foundational model which is not tunable.

Step 4 is to ask the client to get my trained model, version
1.

Step 5 is to tell the client to create a Qlik Dork deployment
model that adapts my fine-tune model on top of the
foundational model.

Step 6 is something that Connor provided for me. It’s a Python
function that calls my deployed model and passes it a prompt
template, and then outputs the results. If you have coded
before, in anything, I’m sure you can trace through each part.

https://qlikdork.com/wp-content/uploads/2023/10/QlikDorkModelReadyInPredibase.png

Steps 7 – infinity are to simply have some fun testing whether
or not I actually fine-tuned the model. If the prompt returned
something you have seen a million times before we would never
know if I had in fact trained anything. Hence, my Qlik Dork
format. Sure enough when I asked the question for Qlik Dork
code for total sales, my very first training row, voila it

https://qlikdork.com/wp-content/uploads/2023/10/Predibase-BaseModelAdaption.png

provided my Qlik Dork syntax as a response.

Then I asked for it as an expression, and asked for a field
name I had never even fed it in my training data and it hit
the nail on the head again. So far, so good.

But what the heck am I using a large LANGUAGE model for if I
don’t push the boundaries. So, I went for it and asked the
question in a really odd order and it crushed it.

It can’t get any better than that
Yes it can, so hold on to your seats.

I used the Qlik Dork scripting language simply to ensure, for
nobody but myself, that what got generated was in fact from my
custom coding training set. But that language with it’s
limited syntax had to go if I wanted to kick things up a
notch. I need to train a model based on a more robust
language. I was positive that I now understood how training
should work, and understood that I would need more than a
handful of rows. But hey, I had a Qlik Sense application in
hand that could manipulate and generate as many rows as I

https://qlikdork.com/wp-content/uploads/2023/10/Predibase-Prompting.png

wanted.

So I tried my hand at training on the Qlik Script language for
some functions that required a little more complexity. There
is a function called “RangeAvg” within Qlik Script that allows
you to pass it 1 value, 2 values or N values. Kind of like
average, but instead of an average of all the rows for Sales
data, it’s a single ‘row’ type function. You can call it with
numbers or field names. What’s interesting abut the function
is that “N values” part of it. Unlike my QDSum, QDAvg and
QDFunctions it had to handle an unknown number of fields. That
challenge seemed very intriguing to me.

Even more than that it, was a good use case for the need to
fine-tune an LLM. By now, some reading this might be thinking
“why bother prompting to get Sum(Sales) when you can simply
type Sum(Sales) and be done with it?”

Well here is the use case: Non Qlik developers (and those who
don’t usually it regularly) would never know that there was a
function called “RangeAvg” so they would never ask for it that
way. Instead they would just ask for average. Guess what? The
training worked like a champ.

2 values – N values it cranked it out correctly. But c’mon
that was child’s play. Since some functions were explicitly
trained on numbers, others on text and others on fields, did
it actually learn that expressions could vary like that? It
sure did. Without any training on field names, the model
properly generated the desired script.

Ok Mr. Smartie Pants LLM, that’s impressive. But let’s kick it

https://qlikdork.com/wp-content/uploads/2023/10/RangeAvg3Values.png
https://qlikdork.com/wp-content/uploads/2023/10/PromptQlikModel_3FieldsExplicit-1.png

up a few notches. How about if I pose the question in a way
that requires it to maintain a context. Bear in mind how
simple my training set was. I fed it nothing like this. But if
it’s truly learning and truly augmenting via the vast
linguistics it already has then maybe, just maybe it would …
retain the context. And the verdict is … it nailed it. I asked
to average the values of all fields in a table, and it
retained what the table had in it.

Lessons Learned
While I was thrilled beyond anything you can imagine when I
got the prompts to work, several thoughts hit me:

Code generation is a very, very natural fit for fine-1.
tuning Large LANGUAGE Models. Because they all use a
consistent, predictable pattern.
I’m not to old to learn new tricks.2.
I’m still young, curious and passionate enough to want3.
to be on the bleeding edge.
I will fail and that’s ok. I’m more than comfortable4.
enough knowing I will learn something powerful in the
process.
That by needing more data than I want to hand type,5.
Generative AI actually opened my eyes other ways of
thinking like an end user.
That this process is iterative just like Analytics. I6.
felt like a business user who had never seen their data
before getting their first dashboard. It had everything
I had asked for, and the second I grasped it, my eyes
were opened to more possibilities and I wanted even
more.
There is so much more to learn. Why oh why didn’t I7.
follow Connor’s advice and try and pull data from HTML
or a PDF to create the training set? Why did I feel the

https://qlikdork.com/wp-content/uploads/2023/10/PromptQlikModel_TableWithFields-1.png

need to do it by hand? Oh yeah, so I trusted that I was
in fact getting out of it, what had gone into it, just
augmented by phenomenal language augmentation.

Update October 31 – If you found this post interesting, feel
free to continue the journey with me and check out my next
post where rather than trying to generate simple lines of
code, I tried my hand at generate very bespoke JSON
structures. Click here to read LLM Fine-tuning (Workflow.)

https://qlikdork.com/2023/10/llm-fine-tuning-workflow/

