
Hungry Hungry Hippos
written by DaltonRuer | June 22, 2023

Background
I loved playing Hungry Hungry Hippos as a child, as a parent
and as a grandparent. So when the opportunity arose to talk
about Information Hungry hippos, I mean end users, I just
couldn’t pass up the chance to use the game as a title.

In a previous post Taming the Trickiness of Temporality I
walked you through a use case where products would go and off
of sale. The solution to the problem was involved the super
cool IntervalMatch function. At the time I told you it was one
of my favorites, and I eluded to the fact that it could use
used to solve other use cases as well like Staffing and
Financial Accounting. In this post I’m going to about it’s
relationship to staffing and the fact that when it comes to
time and attendance information, end users can be like
Informational Hungry Hippos in their requests.

Setting up the Use Case
While I’ve tried to add a little fun to the subject, the use
case itself is very real. I’ve created this short video you
should watch that sets up the use case before proceeding to
get neck deep in the coding I will bring forth.

Now that you’ve watched the video and understand the use case,

https://qlikdork.com/2023/06/hungry-hungry-hippos/
https://qlikdork.com/2021/08/taming-the-trickiness-of-temporality/
https://help.qlik.com/en-US/sense/May2023/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/IntervalMatch.htm

you can empathize with Ella Hippo. Poor thing is starting with
nothing more than the companies Time and Attendance records.
Very simple structured data that identifies the shift that
each employee has clocked in and clocked out.

You can imagine how many information hungry hippos, I mean end
users, like Haley, Hannah and Ivey Rose, ask for “reports”
about who worked during certain time periods in a multitude of
ways. Handling their needs in SQL/Reports as one of requests
can be overwhelming.

Creating our Master Calendar for
Every Minute of Every Day
Unfortunately my friend, you might be the Ella Hippo in your
company. The good news is that through this post I’m going to
walk you through creating the master calendar with time like
you saw in the video. Once you understand how it works, then

you can simply download the zip file for it
below, and make any adjustments you may need in
your environment.

So let’s get started.

Building our calendar is going to be done in 3 steps. First we
will build what is commonly referred to as a Master Calendar,
containing only dates. Next we will build a Master Time table
containing an entry for every minute of the day. Finally we

https://qlikdork.com/wp-content/uploads/2023/06/EmployeeTimeEntryImage.png
https://qlikdork.com/wp-content/uploads/2023/06/BuildCalendar.png

will do the unthinkable and cause a Cartesian Join (don’t say
that phrase out loud near your Database Administrators) so
that we have a resulting Master Calendar for Dates that also
includes every minute of the day.

Defining the Date Range for our Master Calendar
When I say we are creating a calendar, I mean it in the
literal sense. Naturally you have a calendar on your phone,
maybe on a planner on your desk, hanging on your refrigerator,
but you don’t have one digitally that you can utilize within
Qlik to associate to that Time and Attendance data so we will
generate it. The first thing we need to do is define the range
of dates we want for our calendar. In the code below I’m
simply defining the range to be January 1, 2022 through
December 31, 2023.

When building a calendar that we will store, which we will,
it’s best to create the range that will cover all of the
applications that may load it. But, if you are trying to
create the calendar on the fly within your applications you
could use the MIN and MAX dates in your data. Meaning, as in
this case, if there are only employee time records for say
March 12, 2023 – June 21, 2023, then we might as well only
build those dates.

LET varMinDate = Num(MakeDate(2022,1,1));
LET varMaxDate = Num(MakeDate(2023,12,31));

Step 1: Building the Master Calendar
Now let’s get to the cool coding stuff. What we want to do is
create a date record for every single day between and
including the min and max dates we identified in our
variables. But how? Well that’s where the AUTOGENERATE keyword
for the LOAD statement really comes in handy. It gives you the
ability to execute something 1, 2, N times. Notice below I am
using a comparison of the variables to tell it how many times
to iterate.

https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptRegularStatements/Load.htm

MasterCalendar:
LOAD
$(varMinDate) + rowno() – 1 AS Cal_DateAsNum,
date($(varMinDate) + rowno() – 1) AS Cal_Date
AUTOGENERATE $(varMaxDate)-$(varMinDate)+1;

In the application attached you will notice I implemented it
differently so you could see the flexibility. It combines the
AUTOGENERATE with a While clause. In this case the While
clause does the same thing, but you can use your imagination
to realize quickly that the While clause could check other
things besides just the iteration number. Thus, flexibility.

AUTOGENERATE 1
While $(varMinDate)+IterNo()-1 <= $(varMaxDate);

In the LOAD section we are simply creating 2 fields for our
table. The first is Cal_DateAsNum which is simply a number,
and the second is Cal_Date which is a Qlik Datetype field.

While the goal of this document isn’t to teach you how to
build the world’s most thorough Master Calendar, plenty of
posts online for that, I do want to take a second to share
some additional code that you will see in the attachment
application. Typically Master Calendars contain other ways
that your end users will need when they look at a Date. They
may want to know the Month for example. Or the Year. Or the
{insert 100’s of other things that Information Hungry Hippos
might want to see.}

This example simply does a few things to help you understand
what those 100’s of other things may be, and guides you to

https://qlikdork.com/wp-content/uploads/2023/06/MasterCalendarJustStartingPoint.png

considering the DUAL data type that is unique to Qlik just in
case you aren’t already familiar with it. In our case we want
to ensure that if the hippo on the other end builds a chart
that uses the field Cal_Month they can see the month names in
correct calendar order.

Left Join (MasterCalendar)
// Preceding load to create Dual values without having to
do the original CPU work over
Load *,
Dual(Cal_MonthName, Cal_MonthNum) as Cal_Month,
Dual(Text(Cal_Year) & ‘-‘ & Cal_MonthName,
(Cal_Year*100)+Cal_MonthNum) as Cal_YearMonth
// ➕ Add anything else you may want
;
Load *,
Month(Cal_Date) as Cal_MonthName,
Num(Month(Cal_Date)) as Cal_MonthNum,
Year(Cal_Date) as Cal_Year
// ➕ Add anything else you may want
Resident MasterCalendar;

[You can find an enlightening performance use for the DUAL
function by reading my Qlik Community post entitled “You are
invited to a DUAL.”]

Step 2: Building the Master Time table
While the calendar needed some variables to define the range,
time is quite fixed. We know that there are exactly 1440
minutes in a day. In each day. In every day. That never
changes. So, as you can see in the code we can simply tell our
AUTOGENERATE clause to iterate 1440 times.

Above I utilized a PREDEDING load syntax and specifically
called it out. But for this code I didn’t. Not because I’m
lazy, heck I had to write about it here. I did it because 99%
of the time as you evaluate other peoples code they won’t have

https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/FormattingFunctions/Dual.htm
https://community.qlik.com/t5/Healthcare/You-are-invited-to-a-DUAL/td-p/1486276
https://community.qlik.com/t5/Healthcare/You-are-invited-to-a-DUAL/td-p/1486276
https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/load-data-from-previously-loaded-table.htm

comments so I wanted you to be able to recognize the concept.
I’ve colored the preceding load text in red below. Similar to
dates, we might want our Master Time to have other dimensional
information about it like Hour, Minute, Shift etc. Again, you
may have many more that your hippos, I mean, information
starved end users, might want this was only a start for you.

MasterTime_Calendar:
Load *,
If(Hour >= 7 and Hour < 15, ‘First Shift’,
if(Hour >= 15 and Hour < 23, ‘Second Shift’, ‘Third
Shift’)) as Shift
;
LOAD recno() as MasterTime_Key,
 Time(recno()/1440,’hh:mm’) as MasterTime,
 Hour(recno()/1440) as Hour,
 Minute(recno()/1440)as Minute
Autogenerate(1440);

[You can find more of my thoughts about a preceding load in my
Qlik Community Post entitled “Is it Pre or Post Ceding Load.”]

Step 3: Joining Dates and Time
At this point in our execution we will have 2 completely
distinct tables: A master calendar with the dates and a master
time table that has the 1440 minutes. The final step is to
combine them. But how can we join two tables that have no
fields in common?

Normally having no fields in
common is a bad thing. “Oh no a CARTESIAN JOIN” your DBA would
scream. However, in this case it’s exactly what we want. We
want to create a row for every single minute in our Master

https://community.qlik.com/t5/Healthcare/Is-it-Pre-or-Post-Ceding-Load/td-p/1477019
https://qlikdork.com/wp-content/uploads/2023/06/TwoCalendars.png

Time table (1440) for every single date (730) in our Master
Calendar. That’s what Cartesian Join will do, and Qlik
handles that with no problem. So all we do is the normal Join
to the Master Calendar from our Master Time table and we bring
the Time and any other dimensional variations along with it.

Join (MasterCalendar)
Load
MasterTime as Time,
Hour as Cal_TimeHour,
Shift as Cal_TimeShift
resident MasterTime_Calendar;

Our result Master Calendar with Time included now has
1,051,200 rows in it. Which is good since 730 * 1,440 =
1,051,200.

If you clever, you will
notice in the above image that there is no line showing an
association to the Master Time table. That’s because as you
will see in the attachment, I drop the time table as we would
no longer need it.

Connecting our Master Calendar with

https://qlikdork.com/wp-content/uploads/2023/06/MasterCalendarWithTimeCount.png

Time and our Time and Attendance
records
As fun as all of that coding was, that was just to prepare the
foundation for what Ella hippo actually needs from us. She
already had access to the Time and Attendance records and now
we have generated the Master Calendar with time so she is
almost good to go.

After quickly loading those 2 tables the needed data is there,
but there is nothing associating the two.

https://qlikdork.com/wp-content/uploads/2023/06/LoadCalendarAndTimeAndAttendance.png

Here is where the Cartesian Join fear comes from for DBA’s and
Data Modelers … we don’t want every minute and every day to be
associated with every single record in our time and attendance
data. That would infer values that aren’t true. What we do
need is a way to create an association only for those
date/time entries that fit within the start_datetime and
end_datetime intervals. Right?

IntervalMatch to the rescue
That’s exactly what our handy dandy IntervalMatch
functionality does for us. All we have to do, as in the code
below, is define the field that has the date/time value we
want to compare and identify the fields that define our
interval/range of values. In our case we need to identify the
Cal_DateAndTime field that exists in our Master Calendar with
Time, since that has our timestamp. And we need to use the the
start_datetime and end_datetime values from our
EmployeeTimeEntries table.

Inner Join IntervalMatch(Cal_DateAndTime)
Load start_datetime, end_datetime
Resident EmployeeTimeEntries;

If you want to stand up and applaud I’m ok with that. Happy
dances would also be acceptable. In 3 lines of code we were
able to provide a data model now that allows Haley Hippo,
Hannah Hippo and Ivey Rose Hippo to choose any minute, range
of minutes, date or date range and immediately see who worked.

https://qlikdork.com/wp-content/uploads/2023/06/TimeAndCalendarNotAssociated.png

Thus, saving Ella Hippo tons of work and headaches trying to
resolve thousands of one off requests for lists of employees.
More importantly, since they are just fictional, it will
really save you (your team) the work and the headaches.

Disclaimer:
As identified in the comments of code, the employee time and
attendance data was generated using Mockaroo.Com. I value data
privacy to much to ever retain or utilize an previous/current
customer data.
* The names of my hippos are fictional and imply no
relationship to any of your information hungry hippos, I mean
end users. Actually, they are non-fictional, fictional names,
as they are actually my lovely granddaughters who I love to
talk about hippos with.

Attachments
If you are looking to jump start your fun here are zip files
for the each of the projects discussed in the video and the
blog.

https://qlikdork.com/wp-content/uploads/2023/06/EmployeetimeMatchDataModel.png
http://Mockaroo.com

MasterCalendarWithTime IntervalMatchTime

IntervalMatchTime

https://qlikdork.com/wp-content/uploads/2023/06/MasterCalendarWithTime.zip
https://qlikdork.com/wp-content/uploads/2023/06/IntervalMatchTime.zip
https://qlikdork.com/wp-content/uploads/2023/06/IntervalMatchTime.zip

