
Role Playing Dimension of the
Year
written by DaltonRuer | November 16, 2022

The ballots have been tabulated and the 2022 Dorksi for Role
Playing Dimension of the Year goes to the “Physicians Table.”

The CEO, CIO, CMO, CNO of the ficticous, soap opera based
General Hospital Health System all shared the same quote –
“The Physicians Table is literally the lifeblood of our health
system.”

The Chief Data Officer elaborated a bit more by saying “I’m
impressed daily with all of the roles that the physicians
table plays in our organization. It’s versatility and range is
truly mind boggling. Every day of the year it just keeps
putting in the work. It represents the Admitting Physician
when needed. Yet can represent a Surgeon just moments later
with no time to prepare. Then come right back after lunch and
take on the role of a Discharing Physician.”

Role Playing Dimensions
Truth be told there is no Dorksi Award and quotes from
ficticious people don’t really count. But the flexibility of
certain dimensional tables does need to be celebrated. Or at
least discussed from a modeling perspective.

In it’s naturally occuring state a Role Playing Dimension is
simply a table with a primary key and some other fields like

https://qlikdork.com/2022/11/role-playing-dimension-of-the-year/
https://qlikdork.com/2022/11/role-playing-dimension-of-the-year/
https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/role-playing-dimension/

any other table. However, most dimensions are clearly known
and only represent one thing. For example a Patient table
would have some primary key like Master_Patient_ID that would
be referred to in other tables. Always representing the
patient. If the Department table is referred to, everyone
knows it is the Department. Simple Foreign Key to Primary Key
relationships that are referred to in fact tables.

The physician table, however, isn’t quite so simple. In a
healthcare system things are driven from an Encounters (fact)
table that would identify which patient came in, at what time,
for what reason. Lot’s of those simple foreign key to primary
key relationships. Within that encounter table instead of
containing a Physician ID you would find fields like
Admitting_Physician_ID, Admitting_Physician_ID and
Discharging_Physician_ID. No doubt they are foreign keys. But
to what? Hence, the phrase Role Playing Dimension.

Reporting “experts” would know how to perform SQL joins to the
table as needed and would then rename columns in their SQL.
But the goal of good Data Modeling is to make it easy for
these Role Playing Dimensions to be more readily identified
for self-service users.

Modeling Options in Qlik Cloud Data
Integration (QCDI)
Within QCDI there are 3 distinct options you have when it
comes to dealing with these role playing dimensions.

You can use a Transformation step to create datasets for1.
each role. Thus an Admitting_Physician dataset, an
Attending_Physician dataset and a Discharging_Physician
dataset.
When building a Data Mart you can simply “denormalize”2.
the information from the Physician table and flatten it
out so that your Encounter table simply has the columns

of information you choose with the appropriate names
like “Attending_Phsycian_FullName,
Attending_Physician_LicensingState etc.”
When building a Data Mart you can … this is crazy …3.
literally create the role playing dimensional datasets
on the fly.

If you have any data modeling experience under your belt then
you have probably flipped out at the notion that we would
create separate tables that all contained the same
information. I totally agree. But if you reread #1 again be
sure to take note that I didn’t say table I said DATASET. You
see those term differences are key as you model your data
flows within QCDI. Tables are always tables. But datasets can
be materialized or not materialized. Meaning they can just be
views. And by default that’s exactly what will happen and I
will show you what is actually created below.

If you are thinking through the options you probably realize
that option 3 seems just like option 1. They are very similar
with the biggest difference being option 1 is available to be
queried from by anything at any time. It isn’t dependant on
constructing data marts, and those transformed datasets would
be available to all data marts you build. I can ensure you
that our encounters table isn’t the only fact table that will
need to access that hard working physician table.

Below I will document, with pretty pictures for you, each of
the options I described above so you understand and can
implement each of these modeling options for your role playing
dimensions. They may not win my 2022 Dorksi Award, but surely
they are as critical to your business as the physician table
is for healthcare.

Option 1: Transforming the Physican

Table
As you ingest data from your source system(s), like the
Physicians table, they will be in the exact same structures
that they start in. Our goal with this option is to make life
easier down stream. We want to transform our Physicians Table
from a single dataset playing many roles, into the multiple
Role Playing Datasets so that each one serves a singular
purpose later on. Thus, easing the end uers burden of
understanding of finding the role playing fields by having
matching column names for their primary key and foreign key
relationships. We will use a Transform layer to accomplish
that purpose.

Step 1: The first step in your Transofm layer will be to
select your table and press Add as many times as needed. In
our case I needed to press Add 3 times.

Step 2: For each of the “Physicians” datasets you will need to
Rename them appropriately.

https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/DataIntegration/Transformation/Transformations.htm
https://qlikdork.com/wp-content/uploads/2022/11/TransformAddDataSettoTarget.png
https://qlikdork.com/wp-content/uploads/2022/11/TransformRename.png

Step 3: Finally, in my Transform layer I ended up with 4
datasets. The Encounters dataset and the 3 role playing
versions of my Physicians table.

Step 4: The next step is to switch to the Datasets view so
that you can then modify the names of the columns.
“Provider_First_Name” is a perfect column to have in a
versatile role playing table like Physcians, but it isn’t as
perfect as “Admitting_Provider_First_Name” is when the field
is in the Admitting_Physicians dataset. You can select each
and every field and then press Edit to manually edit the field
names. Totally appropriate if you only have a couple, or you
want to really customize each and every field. In my case, as
you will see on the left side of the screenshot below I
defined Rules instead. One of the rules simply is “If the
table name is Admitting_Physicians please prefex each column
name with ‘Admitting_’.” As you can imagine, the other 2 rules
do the same for the Attending and Discharging roles/datasets.

Step 5: Next step is to move to the Model view. Once there you
will need to Add a relationship between your fact table and
your role playing datasets.

https://qlikdork.com/wp-content/uploads/2022/11/Transform4Targets.png
https://qlikdork.com/wp-content/uploads/2022/11/Transforms_DataSetColumnRenames.png

QCDI provides a classic user interface to do that, so I went
about identifying all 3 of the needed relationships.

Step 6: Then I simply went ahead and ran my transformation and
voila I ended up with totally redundant physician tables in
Snowflake. Just kidding. Like I mentioned when describing the
options, these are non materialized datasets so QCDI creates
them as Views. If I select anything from them, the views will
simply execute select statements against the storage table
version of the Physician table, but will alias the fields with
the new names I assigned.

https://qlikdork.com/wp-content/uploads/2022/11/TransformAddRelationship.png
https://qlikdork.com/wp-content/uploads/2022/11/TransformAddRelationshipDetail.png

Option 2: Denomarlizing the
Physician Table
Your hardworking DBA’s do such great work of removing
redundancy in your data by normalizing it. While there are
many benefits to their efforts, being able to quickly consume
the data isn’t one of them. It’s bad enough when you need to
walk all of the relationships for normal dimensions, but role
playing dimensions like our Physician table means 3 times the
work. Thus the term Denormalizing became a thing to simply
unwind those relationships and flatten the data back into a
table of redundant values. Then users can simply select from
the Encounters table and see the information about the
Admitting, Attending and Discharing physicians.

https://qlikdork.com/wp-content/uploads/2022/11/Transforms_SnowflakeViews.png
https://en.wiktionary.org/wiki/denormalize

Options 1 and 3 are essentially the same but why do they even
exist since this denormalizing seems so easy for the end
users? The answer to that question will really come from your
business/data stewards. Options 1 and 3 give them the ability
to see ALL physicians and find the ones that have never been
used as the Admitting, Attending or Discharging Physician for
encounters. While Option 2 only provides the ability to see
information about the ones that have been.

If you are thinking “I have 25 fields in my Physician table so
I don’t want really want to denormalize all of them to the
Encounters table.” You are in luck, because you are totally
welcome to denormalize only the fields you choose.

If you are thinking “I would sure like to have the Physican
Name denormalized to the Encounters table because 90% of the
time that’s all that is needed. But I still need all of the
fields available for the other use cases.” You are in luck,
because Option 2 isn’t mutually exlusive from Options 1 and 3.

Step 1: The first step to denormalizing the physician table
actually begins back at the Storage layer. You will need to
create 3 relationships, just like you did in Option 1. The
difference is that all 3 relationships will be between the
Encounters table and the same Physicians table. Be sure and
note that the Short Name you provide for the relationship is
what will be used to prefix all of the fields from the
Physicians table when it is denormalized.

Step 2: When you create your data mart layer and choose your
fact table, any relationships that are defined will be

https://qlikdork.com/wp-content/uploads/2022/11/DenormalizedRelationships.png

displayed and you can simply check them. In the following
image you can see that all of three of the Physicians
relationships are shown and I have checked them all.

Step 3: The only remaining step for you is to swtich to the
Datasets view and remove any of the denormalized fields that
you really don’t want flattened out to the Encounters table.
In my case I only cared to flatten out the Provider’s Full
Name which is all that is needed 90% of the time. You can also
Edit any of the columns to change/customize their Name.

Note that I purposely gave my relationships Short Names that
would be obvious. In the screen shot you can see how it
prefixed each field from the Physicians table with the Short
Name I provided. Since the key names were Admitting, Attending
and Discharging I didn’t want to cofuse you or have you

https://qlikdork.com/wp-content/uploads/2022/11/Denormalized_Created.png

believe that is how it prefxied the field.

Step 4: All that is left to do is Prepare the Data Mart and
Run it. Now when any end user for any reason sees the
Encounters dataset they will immediately see the Admitting
Provider’s Last Name, the Attending Provider’s Full Name and
the Discharchging Provider’s Full Name.

https://qlikdork.com/wp-content/uploads/2022/11/Denormalized_DeletedColumns.png
https://qlikdork.com/wp-content/uploads/2022/11/DenormalizedSnowflake.png

Option 3: Handling the Roles in
your Data Marts
This option is very much like Option 1 with the exeption being
that it provides you a way to add the Role Playing
relationships needed for specific Data Marts without having to
have taken any prior actions.

Step 1: Similar to Option 2, the first step is to create the
relationships between the fact table and your role playing
dimension table. Refer to Step 1 for Option 2 to see how I
created the 3 relationships between the Encounter and
Physicians tables.

Step 2: After we have added our fact table, in our case the
Encounters table, and whether or not I have implemented Option
2 to flatten some of the fields I press Add Dimension. With
most Dimensions you would simply choose the dataset/dimesnion
and press Ok. But with your Role Playing dimensions you will
want to be sure to add the Name of the Role the table will be
playing. Notice in the screen shot below I have said “And the
Role the Physicians table will be playing this time is that of
the Discharging_Physicians.” You would need to do this for
each Role that your dimension table will play. In my case I
did the same thing for the Admitting_Physicians and the
Attending_Phsycians.

Step 3: The right side of the screen will show you the
Recommended dimensions to relate to your fact table.
Admittedly it seems a bit odd at first, A whole slew of crazy
relationships. The key to accepting what is shown is to
realize that just because you named your relationships in step
1, and just because you named your Role Playing Dimensions
doesn’t mean that QCDI knows which relates to each. After all,
we could have named the Relationships Puppies, Flowers and
Clouds if we wanted to. Just as we could have named our Role
Playing Dimensions Monday, Tuesday and Friday.

With that said it’s your job to point QCDI in the right
direction and check the correct boxes that link together the
right Role Playing Relationship with the right Role Playing
Dimension we just created in Step 2. In the screenshot below I

https://qlikdork.com/wp-content/uploads/2022/11/AddDimension2.png

am about to check the final box to complete my 3 role playing
relationships/dimensions. As you check the boxes you will
notice that the fact table, in my case Encounters, has dashed
lines. Once you complete yours, be sure to press the Apply
button and those lines will be saved, and will become solid
lines.

Step 4: That wasn’t so bad was it? The last remaining step is
to switch to the Datasets view and rename our fields. Because
although there will be an Admitting_Physicians,
Attending_Physicians and Discharging_Physicians tables all of
the fields will still have the names given in the Physicians
table. As with Option 1, Step 4, you are free to manually
rename the fields or create rules.

In the screenshot below you can see that whether I used Option
1 to transform my Role Playing Physicians table and then built
a data mart from those 3 individual dimensions, or use Option
3 to build the Role Playing Dimensions on the fly the result
is the same. In terms of what end users would see when they
look to consume the data. Option 1 provides the ability to
refer to my transformed Role Playing Datasets if I create
additional marts and it already handles the field renaming.
But Option 3 provides the ability to create the Role Playing
Dimensions on the fly if/when another role becomes available.
“Oh look there is a Surgical Encounters table that we are

https://qlikdork.com/wp-content/uploads/2022/11/DataMart_ChooseDimensionCorrectly.png

going to build a datamart for, and we need that Physicians
table to become a Surgeons table.”

Summary
It’s not everyday I get the chance to use an image I created
with Artificial Intelligence like my “Dorksi” for a post. May
seem silly, but the truth is that there are so many other
awards given out for roles that are far less impactful than a
Role Playing Dimension.

In your business it might be the Customers table. Your Sales
table might refer to it as Sold To Customer, Ship To Customer
and Bill To Customer. Whatever your particular business is, I
guarantee you have these incredibly versatile entities.
Hopefully, I’ve done a good job of helping you see various
ways you can model them with Qlik Cloud Data Integration as
well as providing the tutorial for you to use to do it.

https://qlikdork.com/wp-content/uploads/2022/11/DataMart_SameViewsAsTransform.png
https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/DataIntegration/Introduction/Data-services.htm

