
Taming the Trickiness of
Temporality
written by DaltonRuer | August 31, 2021

In my previous post Merging with Time Travel I demonstrated
how you can combine Qlik’s Merge functionality to take
advantage of Snowflake Time Travel. After all, everyone else
in the world is talking about Change Data Capture and Data
Pipelines so I figured I better get on that bandwagon. �

But why should we settle for historical values, when we can
travel into the future and see the values that haven’t
occurred yet. I know what you are thinking “databases only
store current values, or previous values.” But that’s where
you are wrong my friend. Before I explain how you can handle
the data in Qlik, I will explain what temporality is, and why
it is important.

The Need for Temporality
Imagine you run a credit card processing business. Hurray for
you. That’s big time $ if you succeed. In order to do so you
will have to compete for customers with some other pretty
saavy businesses. Take a little friendly advice, don’t lead
with an advertisement like this:

Use our Credit Card we have 27% interest rates

https://qlikdork.com/2021/08/taming-the-trickiness-of-temporality/
https://qlikdork.com/2021/08/taming-the-trickiness-of-temporality/
https://dataonthe.rocks/merging-with-time-travel/

Nobody will sign up. You
need to come up with
something a little sneakier
than that. Oooh I have an
idea. You will offer 0%
interest for 3 months in
order to get the customers
to put the card in their
wallets and start

purchasing with it. Woohoo! A guy named Qlik Dork just signed
up as your first customer. You set his account interest rate
to be 0%, and you set an alarm on your smart phone to change
it to 27% in 3 months. When the alarm goes off you change his
interest rate from 0% to 27%. That was easy now the fees will
come rolling in. But 1 customer isn’t enough.

Soon Qlik Dork’s friends see him using his card and ask him
about it. Soon you have 10 customers swiping/inserting/tapping
that beautiful plastic. It’s getting harder for you to
maintain all of those alarms in your smart phone, so you
upgrade it to a model with more memory. Soon you have 100
customers. 500 customers. 1,000 customers. Oh boy, that’s an
awful lot of alarms.

Never fear, temporal tables are hear. Instead of storing only
the current interest rate and having to remember to change it
at the right point in the future, you can enter the future
dates when your teaser rates are supposed to change. Voila you
are storing future values that haven’t occurred yet.

It’s all Temporal
In case the conversation ever comes up at a friendly
gathering, that kind of data is called uni-temporal. You are
recording the time in the future when the value will become
valid. Since we are having so much fun let’s continue by
briefly touching on bi-temporal and tri-temporal data tables

https://en.wikipedia.org/wiki/Temporal_database

as well. Not only would you store the time when the value
becomes valid, you also store the transaction time when it is
recorded and the time when a decision was made about the
value.

Perhaps running your own credit card processing business was
far fetched. Temporality is also used for grocery stores and
we all have to buy groceries. I mean, you don’t think the poor
store manager hand inputs hundreds of price changes in a
single minute when sales go into effect do you? That would be
crazy. Future prices are recorded far in advance, and the
point of sale applications simply apply the changes at the
appropriate times.

Still can’t relate? Ok think about Prime Days. Where the price
of the item is tiny for the next 60 seconds, and then
afterwards immediately returns to a giant price. On thousands
of items. Globally. In all time zones.

TMI
Normally I don’t elaborate so in depth about database
modeling, but in this case the use case I will show came from
one of my colleagues who is a phenomenal DBA. He can make
temporal data sing in a data warehouse cause that’s his jam.
But he’s been learning more about Qlik’s data modeling and
reached out to find how in the world Qlik could handle this
type of scenario. Where there isn’t a single value to
associate between tables. So try and embrace the craziness for
a few minutes as I think you will be glad you did.

Temporal Values
For the remainder of the article let’s go ahead and imagine
the Prime Days example. Here is what a temporal table for the
products might look like.

Glad we checked now, because it looks like the hottest new
thing on the market, Product ID 1 is going on sale for 1 day
only on September 7’th. Savings of $100. We better get it
then, because the next day it jumps to $120.99. Since we’ve
been considering purchasing Product ID 2 for a while, we
better jump on it since the price will increase a few dollars
on 12/1/2021.

Notice that the last record for each product, or whatever the
record might be, needs to represent inphinity. I simply used
9999 as the inphinity placeholder. It could be any date in the
very distant future to indicate that the “value” will remain.
If a new value were inserted for Product ID 2 that was going
to start on March 3, 2022, then the end date would be changed
for 120.50 to March 2, 2022 and the new record would show what
the value will change to and it will go to “inphinity.”

If we were serious about this temporality stuff, we might look
into that bi-temporal stuff and add a Transaction Date field
that said “It was September 1, 2021 when we changed our end
date for the 120.50 value, and inserted the new record that
starts March 3, 2022. Or if we were really really really
serious we might add a third date, tri-temporal, that says
this value has already had something done with it on this date
so don’t you dare change the value anymore. You must create a
new record starting after that date.

If you are a “data warehouse” type of person, you might think
this is very close to a slowly changing dimension. And you
would be correct it is close. But isn’t the same. The fact

that the dates are in the future and specify a RANGE of dates,
means it isn’t recording what “has changed” like a data
warehouse would do. We aren’t just recording the historical
value changes of the price as a slowly changing dimension. We
are literally recording what will happen in the future in that
table. Of course we also need to track purchases so let’s
imagine that Customer ID purchased both products on 8/17/2021.

What is the price they paid? If you said $110.58 + $117.12,
then you know your data.

Interval
Notice above I bolded and uppercased the word RANGE so it
would really stand out. As humans we are really good at
determining if a given value is within the interval that the
range represents. We are trained early on that in school. A’s
are 90-100 and your score is a 93. Woohoo you run home and
tell your mommy that you got an A. There is no difference
here. You looked at the OrderDate and compared it to the
ranges to know what price would be effective. Don’t worry
about the fact that they would have brought the current price
into a fact table to record actual transactions. We are going
to try and reproduce the FACTS, and understand how to handle
any other data that is similar.

If we simply load those 2 tables into Qlik Sense and trusted
the Associative Model we would end up with a mess:

Wouldn’t it be nice if Qlik provided a handy dandy mechanism
to handle this type of relationship where you have a value
like an OrderDate and you want to compare it to an interval of
values for a Start-End range? Then update the associative
engine with the matches. Turns out they do. It’s got a pretty
obvious name as well IntervalMatch, and it’s lights out easy
to use.

Voila it did the same mental gymnastics you did. But since
there will be millions of such intervals to match, I think
it’s best we let it do it’s thing and you can take a lunch
break.

More Use Cases
To be honest the whole temporality thing is a one off use case
that I did recently for a DBA guru friend of mine who had this
type of data and he was curious how Qlik Sense modeling could
handle the equivalent of a SQL “Between” clause for the join.
I thought it would be a fun way to tie in time travel one more
time, while also introducing the IntervalMatch function which
is incredibly powerful.

https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/IntervalMatch.htm

Before you go away thinking it was a waste of time because you
will never run a credit card processing system, or a grocery
store or run production for Amazon Prime Days. Give me just a
few more moments of your time so I can talk about other use
cases that you may need to handle.

Staffing – How many employees were working between 7:30 and
7:45 AM? Boom! Perfect fit for IntervalMatch.

Accounting – A summary account in a balance sheet is for
accounts 3100 – 3216. Boom! Perfect fit for IntervalMatch.

Now those hit close to home don’t they? These are the things
you make your living on, aren’t they?

Background (Just for fun)
As I was getting started in my Qlik journey as a customer
there were many times I ran into trouble. Most of the time I
would ask a consultant who worked with my health system,
George Kovakas, what we could do to solve the problem. The
vast majority of the time his answer was “I think
IntervalMatch could handle that.” Sure enough a few minutes
later we had the solution banged out. It kind of became a
running joke “I have this problem that I know you will think
can be solved by IntervalMatch can handle, but I don’t know
how.” Well by golly if he couldn’t spin it sideways and solve
the problem. The staffing use case above. Yeah that was real.
We built a Master Calendar with a record for every single
minute of every day, ran interval match and end users could
click on 15, 30, 60 minute increments to know exactly how many

https://www.linkedin.com/in/george-kovakas-8042335/

unique staff had worked. Same with the accounting use case. We
simply had to create the map of what the balance sheet titles
were and what range of accounts they represented. Voila we had
financial reporting under control.

Two very common, but vastly different use cases, solved by
this very powerful Qlik scripting function. Not only was the
function pivotal in solving the challenges at hand then, it
set the stage for me understanding how to take advantage of
what Qlik really offered. To me the power was in the
incremental loads and the fact that I only wanted to load
minimal data as it changed, rather than having to write super
complex SQL statements that I could write, but that required a
full reload every time. So I’ve never stopped sharing my
appreciation for George’s insights.

Get out there and have some fun with this amazing function.

