
Merging with Time Travel
written by DaltonRuer | June 30, 2021

Yikes
Sorry science fiction fans this post isn’t about time travel
or the new fascination with surviving while traveling through
a black hole.

It’s about something much scarier and harder to deal with. End
users who are super demanding.

You know the ones I’m talking about. The ones that no matter
how often you refresh the data in your Qlik Sense application,
they still complain. Because they want the power to press a
magic button and get the latest and greatest data in the
database right then. You know, so that they have complete
control.

There are times you can’t really blame them but you are in a
bit of a fix. You would like to use Dynamic Views because you
loved my post but they need the ability to interact with all
of the data or ask for Insights. You quickly pivot as you know
how to do Partial Reloads in Qlik Sense and you know how to do
incremental loads but then reality hits you in the face. You
read the comments in the load script and they tell you that
the reason the scheduled reloads are hourly is because the
tables in this system don’t have any Last_Modified_Timestamp
type fields that would allow you to load just a handful of
records.

https://qlikdork.com/2021/06/merging-with-time-travel/
https://dataonthe.rocks/dynamic-views-in-qlik-sense-saas/
https://dataonthe.rocks/dynamic-views-in-qlik-sense-saas/
https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/PartialReload.htm

It would be out of this world, if you could just travel
through time and collect the records that have changed since
the application was last reloaded on it’s schedule, and then
merge them with all of the existing data. Wouldn’t it?

Time Travel
As it turns out my friends. You can travel through time if you
are using Snowflake. Well sort of. You see they have a cool
feature set built into the product for something called Time
Travel. One form of that maintains Changes that are made to
the data. It adds metadata columns behind the scenes to your
tables that allow you to modify your typical SQL Selection and
say “give me only the changes that have occurred since X
time”. I’m not kidding, check out my query and the results.

The link for Time Travel Changes above has all of the details
so I will focus on the highlights. I’ve wrapped a normal query
with a little bit of syntax that says “get me only the changes
that have occurred since ‘2021-06-29 18:14:18.779 -0400′” One
tricky part is the last line that says “Hey Snowflake do me a
favor, I know that you store updates as deletes and inserts,
and frankly I don’t need those because I just care about the
new data.” Oh Snowflake will still return any actual deletes
that occur, but only the ones that aren’t part of an update or
upsert if you will. You gotta like that.

PS – Snowflake’s Time Travel includes other fantastic features

https://docs.snowflake.com/en/sql-reference/constructs/changes.html
https://docs.snowflake.com/en/user-guide/data-time-travel.html

as well as this change stuff I’m showing you here. If you
really want to have your mind blown check them out.

Merge
I hear you out there. “That’s cool and all but how does that
help me. It’s not like Qlik Sense will just let me merge that
result set from Snowflake with my current gigantic tables or
anything.”

You see while you have been having so much fun Asking the
Insight Advisor questions, setting up Alerting and adding
Collaboration to your applications Qlik released a new method
of incremental loading that literally does exactly that. The
new method is aptly named Merge. As you can see below I
literally take the command from above and just tell Qlik Sense
to Merge it with the Accounts table and that the
Hospital_Account_ID field is the Primary Key value it should
use.

Your DBA left you hanging and you had no way to know which
records could be loaded incrementally, but Qlik and Snowflake
had your back.

We’ve got your back
But it gets better when you think about this from a
performance standpoint. No more of that complicated
incremental load script code to handle deletes. They are
handed to you on a silver platter, quickly, and the Merge
handles them for you. Which means you can invoke it as often

https://docs.snowflake.com/en/user-guide/data-time-travel.html
https://docs.snowflake.com/en/user-guide/data-time-travel.html
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/Merge.htm
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/Merge.htm

as you would like. Like those situations where pesky users
want to press a button.

In this screenshot I’ve taken the Tiny Reload button and added
it to the screen so that end users can press it when they want
to know the exact up to the second account balances (and any
other account details.) If you aren’t familiar with how to add
extensions this one, or are curious why I chose it please
check out my video called Qlik SaaS Enablement – Extensions.
In it I demonstrate how to add it and demonstrate why.

While slightly overly dramatic, you will see that in my
details table I have a column that shows me when the data was
last refreshed, and any rows that were loaded by the end user
are displayed in green. (Be sure to let me know if you think
that’s a bit cheesy or a neat feature your end users might
like.)

Partial Reload
Please refer to the documentation for Partial Reload for all
of the information you might need, but I wanted to at least
show you just how easy it is.

As a developer you need to modify your code slightly and call
the system function IsPartialReload to see if the loading is
for a full reload or a partial reload. If it is False then you
do your normal table loading like always. At the onset of my
“full reload” I run a simple query against Snowflake to ask
for it’s current timestamp so I know when (in it’s time

https://youtu.be/0As1vc2uqwg
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/IsPartialReload.htm
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/IsPartialReload.htm
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/IsPartialReload.htm
https://help.qlik.com/en-US/sense/May2021/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/IsPartialReload.htm

system) I know when I’m starting my data load.

After I finish all of the table loading script there is
naturally an Else where this magic happens. That incredibly
complex, I mean super simple, Merge statement that does it’s
Snowflake Time Travel. Lastly I swap out the variables and
reset my LastTimestamp table.

Heads up
When I got started on this journey through time with Snowflake
I read in their help that Time Travel is enabled for all
Databases. “WooHoo! I can just run my code.” To which I was
promptly greeted with an error message saying that time travel
wasn’t enabled. That seems like a contradiction. But then it

hit me. There is storage required to handle those metadata
columns I mentioned, and perhaps I need to tell them
specifically that I need to do want these changes for
particular tables. Sure enough I needed to execute the
following statement and then I was cooking with gas.

Alter Table “GENERALHOSPITALDB”.”dbo”.”Accounts” set
change_tracking = true

Summary
As you are fully aware at this point in your career, there is
no such a thing as “one size fits all”. There are use cases
where this makes sense to allow end users to do partial
reloads so they are in control, and there are use cases where
this doesn’t make sense. You know tables with tons of data
that are simply used for historical analysis; Trends over
time.

It’s comforting to know that for nearly 30 years Qlik has
continued to adapt it’s solutions to provide developers with
ways to handle disparate data from anywhere and ensure you can
respond to those demanding use cases. Even cases like this
where you are on the leading, with data that does time travel
with Snowflake? Yeah they’ve got you covered. In an easy to
implement way that will put a smile on your end users faces.

