
Dynamic Views in Qlik Sense
SaaS
written by DaltonRuer | March 12, 2021

I need more data
We’ve all said that before. More importantly, we have all
heard that from other users before. Well let’s imagine that
your users are using something like the Qlik SAP Orders to
Cash Accelerator application. They don’t have data for Orders.
Or Fulfillment. Or Billing. Or Receivables. They have it all.
The data for the entire process. Clearly those users wouldn’t
need or want more would they?

Even those users might get greedy. No way you say?

Well, Qlik also provides accelerators for SAP Financials and
SAP Inventory Management. So I can easily imagine a user
wanting insights from those applications as well even while
viewing insights about the entire Orders to Cash process.

How will you provide the access?
The question isn’t if they will want more, we will know they
will, the question is … “How will you provide the access?”

https://qlikdork.com/2021/03/dynamic-views-in-qlik-sense-saas/
https://qlikdork.com/2021/03/dynamic-views-in-qlik-sense-saas/

Document Chaining
One solution might be Document Chaining. That’s a phrase that
goes all the way back to early QlikView days. It involves
having one application invoke another application and pass the
current filter state. In our case perhaps while the users are
in the Orders to Cash application we simply provide buttons
that would allow them to go to the SAP Financials or SAP
Inventory Management applications. Our friends at Vizlib
recently made life easy by providing that functionality for
you. They have also documented how you could code up the
passing of current filters. In a Document Chaining situation
your end user would then have access to the entire application
and the data was already loaded into it. Yeah, we passed a
Company Code or a Cost Center or a Profit Center and our user
has access to anything in the SAP Financials application,
Problem solved.

On Demand Application Generation
Maybe they do want access to “some” of the SAP Financials
data, but they want current data. Meaning they want you to
read the data right as they request it. Yipes!

Years ago Qlik introduced On Demand Application Generation
(ODAG for short) as a way to provide a bit more flexibility
for responding to our end users wants and whims. Cases just
like that.

Use cases where you need access to what could be gajigabytes
of data, and you need it right now. Creating an On Demand
Application is just like creating any other application. With
the exception, that the LOAD script is modified to only read
the data based on the values passed to the application.

So our calling application would pass any selections that the

https://community.vizlib.com/support/solutions/articles/35000128658-vizlib-selection-bar-guides-document-chaining
https://community.vizlib.com/support/solutions/articles/35000128658-vizlib-selection-bar-guides-document-chaining
https://community.vizlib.com/support/solutions/articles/35000128658-vizlib-selection-bar-guides-document-chaining
https://community.vizlib.com/support/solutions/articles/35000128658-vizlib-selection-bar-guides-document-chaining

end user had made, and the ODAG application would reload all
of the data based on those selections, and the user would then
be presented with that new version of the application. Maybe
the problem is solved.

If you are an old Qlikkie you might recall Direct Query and be
thinking “why wouldn’t I just use that?” Direct Query provides
for that ability to dimensional values inside of an
application, and then it pulls other data fields live for the
end user while they are working. There are a number of
limitations in working with Direct Query that might prohibit
using it that ODAG solves. ODAG also provides the ability to
keep the parent application nimble and focused, while still
allowing for access to the other data/visuals only when
needed. An application built to support ODAG can be called by
many different applications. A base application can also call
out to as many ODAG built applications as it requires.
Providing incredible reuse and flexibility, as well as real
time access to those gajigabytes of data you have.

Dynamic Views
Dynamic Views provide a slightly different form of ODAG that I
really like. It’s similar in that you still build another
application, called a template app, but you don’t need to
build a very robust application. You only need to extract the
minimum set of data needed for the end user, and you only need
to build the minimum set of charts. That sounds odd, but here
is the beauty … your end user will be visualizing the charts
in the application they are already in.

Why do I like that? Because as I always say “Context is King.”
If the user has filtered based on a bunch of analysis, Dynamic
Views provide the ability to visualize that data, external to
the application itself, but right there alongside the charts
they are currently looking at. Here is a bonus, if they are
looking at a Dynamic View and they change their selections,
they will see a warning sign that the data doesn’t match their

https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/DirectDiscovery/limitations-direct-discovery.htm
https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/DirectDiscovery/limitations-direct-discovery.htm

current filters. They can choose to refresh so that it does
match the new filters, or they can click a button to re-apply
the old selections that were used when the Dynamic View was
last refreshed.

Step 1: Enable it
Enough of the options and background information. Let’s jump
right in to how to enable Dynamic Views in your SaaS tenant.
You will need to go to your Management Console, and choose
Settings. Scroll through the settings and you will need to
ensure that both “On-demand app generation” and “Enable
dynamic views” are enabled.

Step 2: Building an Application
that can be called for ODAG/Dynamic
Views
For my example, let’s imagine that what my end user wants to
see in the SAP Orders to Cash application is some very
specific real time data from the General Ledger. Oooh, that
does sound like it might have gajigabytes of data. In fact,
while I’m at it, here is the data model for the SAP Financials
application. Can you see why we might not want to just include
all of it in our O2C application, and might not want to load
that entire application On Demand?

When ODAG was first introduced the coding was admittedly
pretty complicated. Sure there were helpful Qlik Community
posts out there showing you how to do it. But the reality is
that for many, it was a little overwhelming. The good news. Ok
I should say “great news” is that it has been rearchitected

https://community.qlik.com/

and is super simple. Here is a very simple SQL query that
pulls the specific fields that are end users need to see in
real time from my Data Mart that resides in Snowflake. Nothing
fancy, a few fields and a simple WHERE clause.

Notice below I have copied that same command and made 2 very
simple changes to the WHERE clause that allows me to
dynamically use the ODAG variables that will get set when I
call the application from my Orders to Cash accelerator. When
I said it was made much easier than it was originally, I meant
it. What about that weird “IF ‘$(odagActive)’=” THEN” line at
the top? Well if I try to Load the script when I’m building
the application the WHERE clause will fail because those ODAG
variables haven’t been passed. If I can’t load any sample
data, I can’t build my visuals. This nifty little trick
enables me to simply force the ODAG variables that are created
when called, and ensure that I can load some sample data to
utilize to create my visuals. You can find complete
documentation for how to create your ODAG/Dynamic View
templates right on the Qlik Help site.

If you are thinking ahead to the fact that perhaps your data
is numeric. Or to the fact that maybe you want only Selected
values. Or to the fact that you want to load Excluded values.
Don’t worry, Qlik Help also has you covered with a robust
explanation of all versions of the ODAG variables you can
call.

Step 3: Creating the Charts to be
used
This step is also easy. Just create any type of charts that
you want to utilize and then simply make them Master

https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/LoadData/creating-OnDemand-template-app.htm
https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/LoadData/creating-OnDemand-template-app.htm
https://help.qlik.com/en-US/sense/February2021/Subsystems/Hub/Content/Sense_Hub/LoadData/creating-OnDemand-template-app.htm

Visualizations. In my example case here I have created a Table
object that contains the General Ledger Details that we
loaded, and 2 KPI objects that sum the Credits and the Debits.

Step 4: Create the Dynamic View
In our calling application, SAP Orders to Cash in my case, you
simply go to Edit mode, and choose Dynamic Views. Then press
Create New.

A dialog box will appear and all you need to need to do is
provide a Name, and choose the Template app from the dropdown
list. Being super creative I’ve called mine “General Ledger
Details” and the template app I built in steps 2&3 I called
“SAP GL Details.”

When it comes to Row Limit you can choose from None or Row
Limit Expression, which is what I chose. None simply means
that the data source you are calling is small and you simply
don’t care if the end user has filtered anything or not. In my
case, you know that gajigabytes of General Ledger Data, I did
want to ensure that my end user selected something. In some
cases you might want to do a COUNT(SomeFieldID) type
expression that counts how many ID’s are possible and then set
the Maximum Row Count to some number like 50,000. You would
determine your limit based on the time your end users will be
willing to wait for data to be loaded. Of course that will
depend on your network bandwidth and data source.

In my case as you can see I simply said “as long as the end
user selects at least 1 Company Code or at least 1 Cost Center
then let’s go get the data.”

Finally press “Create” and you will have created your first
Dynamic View. Yeah!

Step 5: Drag and Drop
Hopefully that doesn’t sound too intimidating. �

But that’s it my friends, after you have created the Dynamic
View it will then display the Master Visuals you created in
Step 3 and all you need to do is Drag and Drop the ones you
want to utilize in your app onto your canvas.

Step 6: Take it for a Spin
In this animated GIF you will see that after having selected
some values I simply press Refresh and the KPI’s and Details
are now included.

Summary
A few simple steps and I’ve now provided the ability for my
end users to access SAP General Ledger details in a live query
mode. In a manner that honors their need to retain the context
of why they selected certain filters in the first place. The
best part is, you can as well.

If you were not aware that Qlik provided this simple and
elegant form of providing users access to data on the fly, I
sure hope you will consider Dynamic Views in the future.

If you were aware of Dynamic Views but had been afraid of the
old style of coding that was required for ODAG templates, I
hope you will reconsider their use because it really has
become so much easier.

If you have been using ODAG and Dynamic Views in your Windows
environment, I hope this brief post confirms what you were

hoping to hear. That all this wonderful functionality is
available in Qlik Sense SaaS as well.

Why so much hope? Because if there is one thing I know for
certain, your end users are going to ask for more data and I
want you to succeed in giving it to them.

