
Visualizing Data that does
not exist … aka Readmissions
Dashboard
written by DaltonRuer | July 29, 2016

Many who make requests seem to have a belief that Business
Intelligence is magic. They loose their ability to listen to
logic and reason and simply ask you to do the impossible.

[Tweet “Many who make requests seem to have a belief that
Business Intelligence is magic.”]

Pulling data from 18 different sources, many of which that you
don’t even have access to. Childs play like pulling a rabbit
from a hat.

Turning bad into good and interpreting the meaning of the
data. A little tougher kind of like making your stunning
assistant float in midair.

https://qlikdork.com/2016/07/visualizing-readmissions/
https://qlikdork.com/2016/07/visualizing-readmissions/
https://qlikdork.com/2016/07/visualizing-readmissions/
https://qlikdork.com/wp-content/uploads/2016/07/Magician.jpg

Creating a readmissions dashboard. Hey we aren’t Houdini.

That data doesn’t even really exist. Oh sure it exists in the
minds of the people who want you to produce it out of thin
air, but I’ve yet to see a single Electronic Health Record
that stored readmission data. They only store admission data,
not RE-admission data.

Patient Name Admission Date Discharge Date

John Doe 1/1/2016 1/4/2016

John Doe 1/7/2016 1/10/2016

John Doe 1/30/2016 2/4/2016
Those who want dashboards for Readmissions look at data like
the above and talk to you like you are insane because in their
minds it is clear as day that John Doe was readmitted on 1/7,
3 days after their first visit, and was then readmitted again
on 1/30, 20 days after his second visit.

You try to explain to them that there is nothing in any of
those rows of data that says that. They have filled in the
missing data in their minds but in reality it doesn’t exist in
the EHR. They respond with all you need to do is have the
“report” do the same thing and compare the admission date to
the discharge date for subsequent visits. You respond with
“Let’s say I could make SQL which is a row based tool
magically compare rows, what should I do about the following
which is more like the real data?”

Patient Name Admission Date Discharge Date
Patient
Type

John Doe 1/1/2016 1/4/2016 Inpatient

John Doe 1/7/2016 1/10/2016 Outpatient

John Doe 1/30/2016 2/4/2016 Inpatient
They say “Oh that’s easy, when you get to the visit on 1/30
just skip the visit from 1/7 because it’s an outpatient row
and we don’t really care about those and compare the 1/30

admission to the 1/4 discharge.” To which you respond “Well
that’s easy enough now I’ll not only somehow make SQL which
can’t compare rows magically try to compare rows and if it is
an outpatient row I’ll tell SQL to skip it and compare it to
something 2 rows above, or maybe 3 rows above or 10 rows
above.”

Just then you remember the reality is more complicated than
that. In reality you aren’t just comparing all inpatient
visits (other than for fun) what you really care about are if
the visits were for the same core diagnosis or not.

Enc ID
Patient
Name

Admission
Date

Discharge
Date

Patient
Type

Diagnosis

1 John Doe 1/1/2016 1/4/2016 Inpatient COPD

2 John Doe 1/7/2016 1/10/2016 Outpatient
Stubbed
toe

3 John Doe 1/30/2016 2/4/2016 Inpatient
Heart
Failure

4 John Doe 2/6/2016 2/10/2016 Inpatient COPD

5 John Doe 2/11/2016 2/16/2016 Inpatient
Heart
Failure

You don’t want to compare the 1/30 visit to the 1/4 discharge
because the diagnosis aren’t the same you only want to compare
the 2/6 visit to the 1/4 discharge and you need to compare the
2/11 visit with the 2/4 discharge.

If you think this is like making a 747 disappear before a
crowd of people on all sides, just wait it gets worse.

Not only does the EHR not include the “readmission” flags, it
doesn’t really tell you what core diagnosis the visit should
count as. Instead what they really store is a table of 15-25
diagnosis codes

Enc ID ICD9_1 ICD9_2 ICD9_3 ICD9_4 ICD9_…. ICD9_25

1 491.1 023.2 33.5 V16.9 37.52

Good thing for your company you used to be a medical coder so
you actually understand what the mysterious ICD9 or ICD10
codes stand for. You know for instance that the 491.1 really
means “Mucopurulent chronic bronchitis.” It would be nice if
that correlated directly to saying “This patient visit is for
COPD.” But since we are uncovering magic why not explain the
whole trick. You see if the primary diagnosis code is any of
the following:

491.1, 491.20, 491.21, 491.22, 491.8,
491.9, 492.0, 492.8, 493.20, 493.21,
493.22, 494.0, 494.1, 496

 Then the visit may be the result of COPD
but you also have to check all of the
other diagnosis codes and ensure that
none of them contain any of the following
other diagnosis codes:

33.51, 33.52, 37.51, 37.52, 37.53,
37.54, 37.62, 37.63′, 33.50, 33.6,
50.51, 50.59, 52.80, 52.82,
55.69′,’196.0, 196.1, 196.2, 196.3,
196.5, 196.6, 196.8, 196.9, 197.0,
197.1, 197.2, 197.3, 197.4, 197.5,
197.6, 197.7, 197.8, 198.0, 198.1,
198.2, 198.3, 198.4, 198.5, 198.6,
198.7, 198.81, 198.82, 198.89, 203.02,
203.12, 203.82, 204.02, 204.12, 204.22,

204.82, 204.92, 205.02, 205.12, 205.22,
205.82, 205.92, 206.02, 206.12, 206.22,
206.82, 206.92, 207.02, 207.12, 207.22,
207.82, 208.02, 208.12, 208.22, 208.82,
208.92, 480.3, 480.8, 996.80, 996.81,
996.82, 996.83, 996.84, 996.85, 996.86,
996.87, 996.89, V42.0, V42.1, V42.4,
V42.6, V42.7, V42.81, V42.82, V42.83,
V42.84, V42.89, V42.9, V43.21, V46.11

If you have ever been asked to produce a Readmissions
Dashboard you probably understand why I’ve correlated this to
magic. Every time you think you know how to grab the rabbit by
the ears to accomplish the trick, the rabbit changes into an
elephant.

Fortunately your assistant isn’t the traditional 6 foot
blonde, your assistant is Qlik. I’m going to explain how to
make the 747 disappear in three easy steps that any of you
will be able to reproduce:

Step 1
The heavy lifting for this trick actually involves the ICD9/10
codes. If you combine the 15-25 diagnosis codes into 1 field,
then you you can use it to more easily compare the values to
determine what core diagnosis you need to assign to each
encounter. Qlik helps you accomplish that with simple
concatenation as you are loading your encounter diagnosis
data:

ICD9_Diagnoses_1 & ‘, ‘ & ICD9_Diagnoses_2 & ‘, ‘ &
ICD9_Diagnoses_3 & ‘, ‘ & ICD9_Diagnoses_4 & ‘, ‘ &
ICD9_Diagnoses_5 & ‘, ‘ & ICD9_Diagnoses_6 & ‘, ‘
& ICD9_Diagnoses_7 & ‘, ‘ & ICD9_Diagnoses_8 & ‘, ‘ &

ICD9_Diagnoses_9 & ‘, ‘ & ICD9_Diagnoses_10 & ‘, ‘ &
ICD9_Diagnoses_11 &’, ‘ & ICD9_Diagnoses_12 & ‘, ‘
& ICD9_Diagnoses_13 & ‘, ‘ & ICD9_Diagnoses_14 & ‘, ‘ &
ICD9_Diagnoses_15 as [All Diagnosis]

Step 2
One of the really nifty tricks that Qlik can perform in data
loading is a preceeding load. A preceeding load simply means
you have the ability to write code to refer to fields that
don’t exist yet and won’t exist until the code is actually
run. The following code is abbreviated slightly so that it’s
easier to follow logically but the entire set of code is
attached to the post so that you can download it. The “Load *”
right below Encounters tells Qlik to load all of the other
from the second load statement first, then come back and do
the code below. This way we can construct the [All Diagnosis]
field and refer to it within this code. You could repeat all
of the logic for concatenating all of the fields for all 5-10
of the core diagnosis you want to track, or you could load the
encounters and simply do a subsequent join load but you don’t
have to. The Preceeding load makes your life easy and works
super fast.

Encounters:

This is the preceeding load
Load *,
// If the primary matches then it’s possibly COPD and if the
none of the other 14 are one of the values listed then it
definitely is COPD
IF (Match([ICD9 Diagnoses 1] , ‘491.1’, ‘491.20’ …
‘493.21’, ‘493.22’, ‘494.0’, ‘494.1’, ‘496’) > 0
And WildMatch([All Diagnosis], ‘*33.51*’, ‘*33.52*’,
‘*37.51*’ … ‘*V43.21*’, ‘*V46.11*’) = 0, ‘COPD’,

// If we found COPD great, otherwise we need to check for

Sepsis
IF (Match ([ICD9 Diagnoses 1] , ‘003.1’, ‘027.0’, … ‘785.52’
) > 0
And WildMatch([All Diagnosis], ‘*33.50*’, ‘*33.51*’ …
‘*V43.21*’, ‘*205.32*’) = 0, ‘Sepsis’,
‘Nothing’)) as [Core Diagnosis];

This is the regular load from the database or file
LOAD
MRN,
EncounterID,
……
[ICD9 Diagnoses 1],
[ICD9 Diagnoses 2] …..

Step 3
The final step, which many believe to be the hardest is
actually the easiest to do within Qlik. In fact truth be told
when I was a young whipper snapper starting out on my Qlik
journey I tried to do everything in SQL because I knew it so
well, and did minimal ETL within Qlik itself until I found
about this Qlik ETL function. The function is simply called
“Previous.” It does exactly what it sounds like it … it allows
you to look at the previous row of data. Seriously, while you
are on row 2 you can check the value of a field on row 1. In
practice it works just like this:

IF(MRN = Previous(MRN) …..

How cool is that? How do I use it for solving this
readmissions magic trick? Just like this:

IF(MRN = Previous(MRN),’Yes’, ‘No’) as [Inpatient
IsReadmission Flag],

If the MRN of the row I’m on now, is the same as the MRN of

the previous row, then yes this is a readmission, otherwise no
this is not a readmission it is a new patients first
admission. Actually that’s the simplified version of my code.

My code actually thinks through how the results would need to
be visualized. Besides an easy human language Yes/No flag
someone is going to want to get a count of the readmissions
right? Does the Qlik Dork want to have charts or expressions
that would have to use IF statements to say if the flag = Yes,
of course not. I want the ability to have field that is both
human readable Yes/No, but also computer readable for counting
1/0. That’s where the magic of the DUAL function comes into
play. It gives me a single field that can be used for both
needs.

IF(MRN = Previous(MRN),Dual(‘Yes’, 1),Dual(‘No’,0)) as
[Inpatient IsReadmission Flag],

Using the Dual data type allows me to provide the end user
with a list box while also allowing me to provide very fast
performing expressions:

Sum([Inpatient IsReadmission Flag])

How does the entire Readmissions load work? After loading the
encounters, and allowing the preceeding load to qualify the
encounters into core diagnosis types I simply do a self-join
to the encounter table referring only to the inpatient records
and ordering the data by the MRN and the Admission date and
time.

Left Join (Encounters)
LOAD
EncounterID,
IF(MRN = Previous(MRN),Dual(‘Yes’, 1),Dual(‘No’,0)) as
[Inpatient IsReadmission Flag],
IF(MRN = Previous(MRN),Previous([Discharge Dt/Tm])) as
[Inpatient Previous Discharge Date],
IF(MRN = Previous(MRN),Previous(EncounterID)) as [Inpatient

Previous EncounterID],
IF(MRN = Previous(MRN),NUM(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])),’#,##0.00′)) as [Inpatient
Readmission Difference],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) <= 30.0, Dual(‘Yes’, 1),
 Dual(‘No’,0)), Dual(‘No’,0)) as [Inpatient IsReadmission
within 30]
Resident Encounters
Where [Patient Type] = ‘Inpatient’
Order by MRN, [Admit Dt/Tm];

If you are paying attention you’ll notice that the above is
simply our “for fun” counts to show all inpatient readmissions
and has nothing to do with any of the core diagnosis. In order
to perform that trick I do the same basic steps but I enhance
my where clause to only look for encounters that have a core
diagnosis of COPD and I simply name my flags and other fields
differently.

Left Join (Encounters)
LOAD
EncounterID,
IF(MRN = Previous(MRN),Dual(‘Yes’, 1),Dual(‘No’,0)) as [COPD
IsReadmission Flag],
IF(MRN = Previous(MRN),Previous([Discharge Dt/Tm])) as [COPD
Previous Discharge Date],
IF(MRN = Previous(MRN),Previous(EncounterID)) as [COPD
Previous EncounterID],
IF(MRN = Previous(MRN),NUM(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])),’#,##0.00′)) as [COPD
Readmission Difference],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) <= 30.0, Dual(‘Yes’, 1),
Dual(‘No’,0)), Dual(‘No’,0)) as [COPD IsReadmission within
30],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-

Previous([Discharge Dt/Tm])) <= 90.0,’Yes’, ‘No’), ‘No’) as
[COPD IsReadmission within 90]
Resident Encounters
Where [Patient Type] = ‘Inpatient’ and [Core Diagnosis] =
‘COPD’
Order by MRN, [Admit Dt/Tm];

And just when you think I’ve pulled as much handkerchief out
of my sleeve that it can possibly I hold I do the same steps
for Sepsis this time.

Left Join (Encounters)
LOAD
EncounterID,
IF(MRN = Previous(MRN),Dual(‘Yes’, 1),Dual(‘No’,0)) as
[Sepsis IsReadmission Flag],
IF(MRN = Previous(MRN),Previous([Discharge Dt/Tm])) as
[Sepsis Previous Discharge Date],
IF(MRN = Previous(MRN),Previous(EncounterID)) as [Sepsis
Previous EncounterID],
IF(MRN = Previous(MRN),NUM(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])),’#,##0.00′)) as [Sepsis
Readmission Difference],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) <= 30.0,Dual(‘Yes’, 1),
Dual(‘No’,0)), Dual(‘No’,0)) as [Sepsis IsReadmission within
30],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) <= 90.0,’Yes’, ‘No’), ‘No’) as
[Sepsis IsReadmission within 90],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) <= 120.0,’Yes’, ‘No’), ‘No’) as
[Sepsis IsReadmission within 120],
IF(MRN = Previous(MRN),IF(Interval([Admit Dt/Tm]-
Previous([Discharge Dt/Tm])) > 120.0,’Yes’, ‘No’), ‘No’) as
[Sepsis IsReadmission > 120]
Resident Encounters

Where [Patient Type] = ‘Inpatient’ and [Core Diagnosis] =
‘Sepsis’
Order By MRN, [Admit Dt/Tm];

And then for AMI. And then for CHF. And then for … Oh you know
the handkerchief can go on forever and eventually we end up
with a data model that includes all of these awesome fields
that didn’t exist when we began so that we can actually do our
work.

https://qlikdork.com/wp-content/uploads/2016/07/ReadmissionsFields.png

Voila a Readmissions Dashboard
Not only can we then provide a really nice looking dashboard
which includes accurate statistics we can do it using very
simple expressions that are incredibly fast.

https://qlikdork.com/wp-content/uploads/2016/07/ReadmissionsDashboard.png

Click this link to get the entire Readmissions Code start
script: ReadmissionsCodeScript

https://qlikdork.com/wp-content/uploads/2016/07/readmissionsDashboard_MeasureForSum.png
https://qlikdork.com/wp-content/uploads/2016/07/ReadmissionsCodeScript.txt

